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ABSTRACT

Objective:	The	aim	of	this	study	was	to	predict	the	body	weight	(BW)	of	a	Belgian	Blue	X	Friesian	
Holstein	(BB	X	FH)	crossbred	in	Indonesia	based	on	morphometrics	using	random	forest.
Materials and Methods:	A	total	of	26	BB	X	FH	crossbreds	were	observed	for	BW,	chest	weight	
(CW),	body	length	(BL),	hip	height	(HH),	wither	height	(WH),	and	chest	girth	(CG)	from	0,	30,	60,	
90,	120,	150,	180,	210,	240,	270,	and	300	days	of	age.	Stepwise	regression	and	random	forest	
were	performed	using	R	3.6.1.
Results:	The	random	forest	results	show	that	CG	is	an	important	variable	in	estimating	BW,	with	
an	important	variable	value	of	24.49%.	Likewise,	the	results	obtained	by	stepwise	regression	
show	that	CG	can	be	an	indicator	of	selection	for	the	BB	X	FH	crossbred.	The	R	squared	value	
obtained	from	the	regression	is	0.83,	while	the	R	squared	value	obtained	from	the	random	
forest	(0.86)	is	greater	than	the	regression.
Conclusion:	In	conclusion,	random	forest	produces	a	better	model	than	stepwise	regression.	
However,	a	good	simple	equation	to	use	to	estimate	BW	is	CG.
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Introduction

Belgian Blue cattle is a double-muscled cattle originat-
ing from Belgium. This cattle has an 11-nucleotide base 
deletion in the myostatin gene. In Indonesia, these cattle 
were bred by crossbreeding with other Bos taurus or local 
Indonesian cattle [1,2]. The Belgian Blue cannot adapt well 
to warm regions; therefore, the BB is crossed with other 
local cattle, one of which is the Friesian Holstein (FH), 
resulting in better performance than other crossbreds [3]. 
Preliminary research on Belgian Blue X Friesian Holstein 
(BB X FH) crossbreds for body weight (BW), morphology, 
and survivability has been conducted in Indonesia [4,5]. 
However, no research has been conducted to predict the 
growth rate of BB X FH.

Machine learning (ML) is an algorithmic develop-
ment that is widely used to solve various problems. ML 
is widely used in animal science for predicting many live 
BWs [6], such as in chickens [7] and cattle [8], predicting 

milk yield [9], and precision nutrition [10]. ML algorithms 
are classified into three types of learning: reinforcement 
learning, unsupervised learning, and supervised learning 
[11]. Random forests in animal science are used to classify 
breeds, predict BW, and identify important single nucleo-
tide polymorphisms (SNPs) [12–14].

Random forest is a popular ML algorithm that is 
widely used in classification and regression and has var-
ious advantages and high accuracy [15]. Therefore, this 
study aimed to predict the BW of a BB X FH crossbred in 
Indonesia based on morphometrics using random forest.

Materials and Methods

Ethical approval

The experimental procedures were carried out following 
the guidelines established by the Ministry of Agriculture 
of Indonesia. The Indonesian Agency for Agricultural 
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Research and Development approved the procedures 
(Balitbangtan/Balitnak/Rm/06/2021).

Animals

A total of 26 Belgian Blue X FH crossbreds were observed 
for BW, chest weight (CW), body length (BL), hip height 
(HH), wither height (WH), and chest girth (CH) from 0, 
30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 days of 
age. BW was measured in kg using the animal scale for 
cattle. Morphometric variables were measured using ani-
mal tape (Rondo). The experiment was carried out at the 
Indonesian Research Institute for Animal Production in 
Bogor, Indonesia.

Feeding and management

The animals were kept in individual pens equipped with 
feeders and automatic drinking water. The feeder and 
drinking water tanks were cleaned every day. The cage was 
built from iron pipes on each side with concrete material 
for the floor. The roof of the cage was made from asbes-
tos. From the age of 1 to 21, the animals were fed milk for 
about 2 l per head per day, then continuously increased up 
to 5 l per head per day. Starting at the age of 90 days, the 
animals were offered a mix of fresh chopped Napier grass 
and concentrate up to 200 g per head per day, which were 
offered after the calves received milk. Then, at the weaning 
age (about 5 months of age), the animals were fed a mix-
ture of freshly chopped Napier grass and concentrate for 
about 2 kg. The legume leaves (Gliricidia sepium) were also 
offered to each animal, up to 1 kg per head per day. After 
that, all the animals received daily feed, which consisted 
of mixed fresh chopped Napier grass and legume leaves 
(20–25 kg per head per day) and concentrates (3 kg per 
head per day).

Analysis data

Descriptive statistics, stepwise regression, and random 
forest were performed using R 3.6.1 [16]. The goodness-
of-fit of the regression models was assessed using the 
coefficient of determination (R2) and Akaike’s information 
criterion (AIC). Stepwise regression was used to develop 
equations to predict BW from morphometric traits and 
age. In this study, three machine-learning methods have 
been used for estimating the weight of crossbreds during 
the first 300 days of life using body measurements.

Results and Discussion

Based on the results of descriptive statistics, the BW and 
morphometric size of males are greater than those of 
females. In most animals, males are larger than females 
and are affected by testicular secretions (testosterone and 
its metabolites) [17]. The BW and morphometric size are 
presented in Tables 1 and 2. BW at 300 days of BB X FH 
was greater than that of Boran beef cattle from Kenya at 
365 days of age [18]. This shows that B. taurus has bet-
ter BW performance than Bos indicus. Based on the results 
of stepwise regression, BL and CG are the best models for 
estimating the BW of crossbreds (Table 3). However, CG is 
a simple and good variable for estimating BW. On the other 
hand, rump height has a high direct effect value in predict-
ing BW in Nguni cattle [19]. In Hereford cows, metacarpus 
girth and backside half-girth are important variables in 
estimating live weight [20]. Therefore, CG and BL can be 
selection criteria for crossbreeding between Belgian Blue 
and FH. Head length contributed to 88% of the variation in 
male BW in South African Kalahari Red goats [21].

Based on the results of random forest, the variable 
importance values in this study were 21.88%, 20.88%, 
24.49%, 23.28%, and 20.49% for WH, BL, CG, HH, and 
CW, respectively. These results support the previous 

Table 1. Means,	standard	error	of	BW,	and	morphometrics	of	male	(n =	12	heads).

Age BW (kg) WH (cm) BL (cm) CG (cm) HH (cm) Chest width (cm)

0 64.58	±	9.00 74.42	±	3.03 66.50	±	4.17 78.75	±	4.22 75.83 22.00	±	2.56

30 70.50	±	9.50 82.99	±	5.49 78.02	±	10.84 87.42	±	4.58	 88.23	±	9.27 25.58	±	1.38

60 100.23	±	8.47 88.32	±	4.87 83.15	±	9.91 97.17	±	4.73 94.22	±	7.68 27.67	±	1.72

90 128.76	±	6.30 92.65	±	4.95 87.85	±	8.70 104.83	±	6.85 100.61	±	8.84 29.58	±	1.31

120 154.08	±	9.95 97.94	±	4.73 93.74	±	9.80 110.83	±	7.15 103.06	±	4.58 31.75	±	1.22

150 177.43	±	12.34 102.95	±	5.48 98.82	±	10.03 118.33	±	5.96 108.39	±	4.63 33.08	±	1.16

180 199.74	±	19.03 107.30	±	5.01 104.56	±	7.83 124.42	±	43.8	 112.67 34.17	±	1.75

210 218.15	±	15.52 108.95	±	4.92 109.52	±	7.67 130.50	±	3.61 114.83	±	3.72 35.08	±	2.27

240 237.83	±	25.99 109.88	±	3.68 114.95	±	6.16 135.50	±	5.13 116.82	±	4.12 36.25	±	2.09

270 261.54	±	30.95 112.89	±	3.64 116.91	±	5.91 140.42	±	6.35 119.04	±	3.46 37.42	±	2.35

300 283.14	±	37.15 113.72	±	3.24 118.71	±	6.95 143.75	±	7.28 120.45	±	4.77 37.67	±	2.74
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stepwise regression analysis, where CG was an import-
ant variable for BB X FH cattle. An increase in node purity 
(IncNodePurity) denotes a change in the homogeneity of 
the groups formed by the trees. Based on the random forest 
results, it is known that two variables have optimal results 
in predicting BW in crossbreds; this can be seen from the 
high R2 value, while the Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) values are the smallest 
(Table 4). In this study, we found random forests produced 
better prediction performance. However, the animal sam-
ples are very limited, and more animals need to be used for 
future studies.

Conclusion

In conclusion, random forest produces a better model 
than stepwise regression. The random forest analysis pro-
duced the best predictive performance, indicating that this 
modeling approach is optimal for calculating BW in this 
investigation. Stepwise regression analysis revealed that 
the models involving BL and CG are the most effective for 
estimating the BW of crossbred cattle. The CG is a simple 
equation that can be used to estimate BW.
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Table 2. Means,	standard	error	of	BW,	and	morphometrics	of	female	(n =	14	heads).

Age BW (kg) WH (cm) BL (cm) CG (cm) HH (cm) Chest width (cm)

0 66.36	±	9.30 72.07	±	3.97 64.21	±	4.23 78.21	±	6.00 73.50	±	7.05 20.36	±	4.29

30 68.57	±	6.24	 80.37	±	6.16 70.99	±	8.66 84.5	±	6.51 85.24	±	5.64 24.57	±	5.88

60 96.86	±	7.83 87.88	±	5.14 85.03	±	5.78 96.29	±	5.50 93.84	±	5.69 28.71	±	5.04

90 123.79	±	7.44 93.25	±	5.83 89.57	±	5.63 104.07	±	5.37 98.65	±	6.04 31.50	±	4.00

120 146.95	±	11.19 98.20	±	6.14 94.98	±	7.35 113.21	±	4.98 102.64	±	4.06 32.57	±	3.61

150 172.	41	±	13.85 103.37	±	5.51 100.04	±	8.38 118.64	±	5.12 108.02	±	4.60 34.14	±	4.45

180 168.11	±	77.47 107.49	±	4.74 104.80	±	6.97 124.79	±	5.58 112.41	±	4.39 34.79	±	4.42	

210 206.48	±	24.40 109.10	±	4.89 108.65	±	6.62 130	±	4.76 113.92	±	4.67 35.79	±	4.71	

240 221.20	±	24.30 111.28	±	4.22 111.92	±	5.81 133.93	±	5.99 116.71	±	4.03 37.14	±	5.02

270 238.56	±	27.64 113.46	±	5.14 115.39	±	6.89 137.07	±	6.63 117.59	±	4.68 37.57	±	5.11

300 252.41	±	29.86 114.77	±	5.29 117.73	±	8.37 141.14	±	8.05 120.12	±	4.32 38.86	±	4.94

Table 3. Stepwise	regression	of	BW	and	morphometrics	in	BB	X	FH.

Variables in model Model R2 AIC

BL	+	CG BW	=	−190.24	+	0.87	BL	+	2.35	CG 0.83 1943.25

WH	+	BL	+	CG BW	=	−200.07	+	0.36	WH	+	0.75	BL	+	2.22	CG 0.83 1944.41

BL	+	CG	+	CW BW	=	−191.30	+	0.88	BL	+	2.25	CG	+	0.35	CW 0.83 1944.84

WH	+	BL	+	CG	+	HH BW	=	−197.28	+	0.49	WH	+	0.82	BL	+	2.24	CG	–	0.23	HH 0.83 1946.14

WH	+BL	+	CG	+	CW BW	=	−200.15	+	0.33	WH	+	0.77	BL	+	2.15	CG	+	0.28	CW 0.83 1946.14

CG BW	=	−185.27	+	3.04	CG 0.82 1952.16

BL BW	=	−168.21	+	3.44	BL 0.76 2035.88

WH BW	=	−278.19	+	4.47	WH 0.75 2045.90

HH BW	=	−265.74	+	4.13	HH 0.73 2067.25

CW BW	=	−120.34	+	890	CW 0.61 2174.68

Table 4. Random	forest	summary	for	predicting	BW	using	
morphometrics	data.

mtry R2 RMSE MAE

2 0.86 26.35 16.76

3 0.85 27.03 17.09

5 0.83 28.45 17.76
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