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ABSTRACT

Objectives: Streptococcus agalactiae	is	a	zoonotic	human	and	animal	pathogen	that	causes	global	
economic	losses	in	aquaculture	and	fatal	outcomes	in	Tilapia.	This	study	aimed	to	identify	S. aga-
lactiae	isolated	from	different	fish	sources	intended	for	human	consumption	phenotypically	and	
genotypically	and	to	characterize	the	virulence-associated	genes	fbsA (fibrinogen-binding	protein	
FbsA),	cfb	(CAMP	factor),	and	pbp1A/ponA (penicillin-binding	protein	1A).
Materials and Methods: Three	hundred	Nile	Tilapia	fish	(Oreochromis niloticus)	were	collected	
from	different	farms	and	retail	shops	in	Dakahlia	and	Damietta,	Egypt,	during	the	summer	of	2020.	
The	samples	were examined	using	routine	phenotypic	methods,	then	characterized	using	poly-
merase	chain	reaction	(PCR)	targeting	S. agalactiae-specific	dltS	gene.	All	S. agalactiae	 isolates	
were	examined	for	the	susceptibility	to	ten	antimicrobial	agents	by	the	disc	diffusion	method.	The	
virulence-associated	genes	(fbsA, cfb,	and	pbp1A/ponA)	were	characterized	using	multiplex-PCR.
Results:	Streptococcus agalactiae	was	detected	in	7%	(n	=	21/300)	samples.	The	isolates	showed	
high	resistance	against	ampicillin	and	erythromycin	(20/21;	95%)	for	each.	The	most	predominant	
antibiotypes	through	isolates	were	P,	CN,	SXT,	CRO,	TE,	CTX,	E,	AMP,	at	10.5%	for	each	antibiotype.	
A	 total	of	19	 (90.5%)	of	S. agalactiae	 isolates	 showed	multi-drug	 resistance	 (MDR),	and	 those	
were	recovered	from	market	Tilapia	fish. The	virulence-associated	genes	(fbsA, cfb,	and	pbp1A/
ponA)	were	identified	in	the	S. agalactiae	as	100%,	76%,	and	52%,	respectively.
Conclusions: The MDR	S. agalactiae	detected	in	raw	Tilapia	fish	pose	a	significant	health	hazard	
to	consumers	due	to	their	zoonotic	characteristics.
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Introduction

Streptococcus agalactiae, a Group B Streptococcus (GBS), 
produces a range of pathological conditions in aquatic ani-
mal species [1]. It causes disease in fish and humans [2] and 
animals, such as dogs, cats, and cattle [3]. GBS is the main 
causative agent of Streptococcosis outbreaks in freshwa-
ter fish aquaculture [4]. S. agalactiae has been associated 
with cases of Streptococcosis outbreaks among humans 
following fish consumption, indicating its potential as a 
zoonotic agent [5]. S. agalactiae is responsible for menin-
goencephalitis and septicemia in freshwater fish such as 
Tilapia [6], and cases of sudden death without detectable 
symptoms in freshwater, estuarine, and marine fish spe-
cies [7]. Diseased fish show typical symptoms, including 
spiral swimming, anorexia, corneal opacity, unilateral or 

bilateral exophthalmia, and ulcers and hemorrhages in 
the skin [8,9]. Affected organs, such as the eye, liver, kid-
ney, and brain, show gross pathological changes, enlarging 
and showing hemorrhagic and inflammation signs [10]. 
However, fish may show no signs before sudden death [11].

The severity of the disease produced may be attrib-
utable to factors such as its virulence marker and water 
temperature [12,13]. Virulence genes facilitate the ability 
of the pathogen to cause disease. They are classified into 
three classes: adhesin genes (fbsA, fbsB, pavA, lmb, and 
scpB), invasin genes (cylE, cfb, Spb1, hylB, rib, and bca), 
and immune evasion genes (bac, cspA, and pbp1A/ponA). 
They play a major role in pathogenicity after infection of 
the host [14]. These genes also help bacteria stay alive, 
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make the host less angry, and let the bacteria get around 
the immune system.

The variation in susceptibility of S. agalactiae to anti-
microbials could be due to variations in serotypes or to 
the repeated uncontrolled application of antibiotics in 
aquaculture [15]. Several antibiotics are used to eliminate 
streptococcal infection, but these antibiotics’ frequent 
and improper application can produce antimicrobial drug 
resistance [13,16]. The difference in the effects of antimi-
crobial treatment and vaccination may be attributed to the 
ability of streptococci to colonize and survive inside phago-
cytic cells, preventing their exposure to macrophages [17].

The Nile Tilapia (Oreochromis niloticus) is the world’s 
fourth most cultured fish species [18]. It is the main species 
cultured in Egypt, representing about 65.15% of Egyptian 
fish production [19], because of its rapid growth rate, good 
feed conversion, ability to survive in poor environmental 
conditions, resistance to disease, ease of spawning, palat-
ability, and good consumer acceptance [20]. Large-scale 
production of farmed Tilapia increases the fish’s stress 
and, consequently, their susceptibility to disease [21]. 
Streptococcal outbreaks can cause major economic losses 
and are a major challenge for the development of the tila-
pia industry worldwide [22]. There is a little consideration 
about the resistant phenotypes, antimicrobial susceptibil-
ity, and virulence mechanisms of S. agalactiae recovered 
from farmed, diseased, and retailed Tilapia fish in Egypt. 
Thus, this study aimed to detect the prevalence of S. aga-
lactiae among Tilapia fish recovered from diseased farmed 
fish and retail fish, study their antimicrobial susceptibility, 
and genotype their virulence-associated genes. Finally, to 
evaluate the hygiene measures taken among retail shop 
Tilapia fish. 

Materials and Methods

Ethical approval

Our study design and fish sampling were approved by the 
Research Ethics Committee of the Faculty of Veterinary 
Medicine, Mansoura University, Egypt (Protocol code: 
M/19).

Fish sampling

From April 2020 to November 2020, 300 Nile Tilapia fish 
were collected. One hundred fish were sampled from farms 
located at EL-Manzala Lake, and two hundred fish were 
collected from retail markets in Dakahlia and Damietta 
provenances, Egypt. Fish samples were gathered in sterile 
screw-capped plastic vials, placed in an icebox, and sent for 
microbiological analysis at the Bacteriology, Mycology, and 
Immunology Department, Faculty of Veterinary Medicine, 
Mansoura University.

Isolation of S. agalactiae from Tilapia

Under sterile conditions, swabs were sampled from the 
kidney, brain, liver, eye, spleen, and gills and plated on 
Edward agar (Oxoid, Basingstoke, UK) and 5% sheep blood 
agar (Oxoid, Basingstoke, UK), followed by incubation for 
24 h at 37°C. Tryptone soy agar (Oxoid, Basingstoke, UK) 
and blood agar (Oxoid, Basingstoke, UK) were streaked 
with separate cultured colonies showing morphology sim-
ilar to Streptococci and then incubated at 37°C for 24 h to 
obtain pure isolates. Streptococcal isolates were charac-
terized using colonial morphology, Gram staining, motility, 
catalase tests, cytochrome oxidase tests, hemolysis on 5% 
sheep blood agar, and esculin hydrolysis on bile esculin 
slants [23,24]. The CAMP reaction was used as a presump-
tive diagnosis for S. agalactiae, as the CAMP factor was 
identified first in S. agalactiae [25]. All suspected strepto-
cocci isolates were preserved in 20% glycerol.

DNA extraction

Genomic DNA was extracted from all strains via homoge-
nizing of a few bacterial colonies (3–5 colonies) in about 
two hundred milliliters of deionized water, then boiling 
for fifteen minutes, then centrifugation at 10,000 g for 
three minutes. All the supernatant was collected in a ster-
ile Eppendorf tube and used as a DNA template [26]. The 
genomic DNA was stored at −20°C until it was used.

Molecular identification of S. agalactiae using PCR

All suspected Streptococcus spp. were characterized using 
polymerase chain reaction (PCR) analysis of specific 
primers targeting the S. agalactiae-specific dltS gene. The 
primer sequence and PCR cyclic conditions were men-
tioned by Poyart et al. [27] (Table 1). The PCR used reaction 
mix contained 12.5 µl 2× Tag PCR Master Mix (Enzynomics, 
Daejeon, South Korea), 1 µl of each primer (Metabion 
International AG, Steinkirchen, Germany), and 3 µl of tem-
plate DNA in a final volume of 25 µl. The PCR cycle condi-
tions were: 5 min at 94°C, 35 cycles at 94°C for 45 sec, 66°C 
for 45 sec, and 72°C for 90 sec, and the extension step at 
72°C for 5 min using a thermal cycler (Applied Biosystem, 
2720 thermal cycler, USA). Then, 10 µl of amplified PCR 
products were seen using 1% agarose gel through a gel 
documentation system (Hoefer PS300B life science, USA) 
and then checked with UV-induced fluorescence (Cleaver 
Scientific Ltd. UV gel documentation system, USA).

Sequencing of the 16S rRNA of S. agalactiae

The primer sequence and PCR cyclic conditions for 16S 
rRNA used for S. agalactiae confirmation and sequencing 
were performed according to Lagacé et al. [28]. The puri-
fication of amplified products for strains was performed 
using QIAquick PCR Product Extraction Kits (Qiagen Inc. 
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Valencia, CA) and sequenced using BigDye Terminator 
V3.1 cycle sequencing kits (Perkin-Elmer, Foster City, CA). 
According to the manufacturer’s instructions, the puri-
fication of the sequence reactions (Centrisep, spin-col-
umn) used an Applied Biosystems 3130 automated DNA 
Sequencer (ABI, 3130). BLAST® analysis (Basic Local 
Alignment Search Tool) was used to identify the sequences 
and obtain their GenBank accession numbers [29]. 
Phylogenetic analyses were performed using maximum 
likelihood, neighbor-joining, and maximum parsimony in 
MEGA6 (Fig. 3) [30].

Antimicrobial susceptibility test for S. agalactiae

Using disc diffusion methods, all S. agalactiae strains were 
tested for susceptibility against 10 antimicrobial agents 
belonging to seven antimicrobial classes. These antimi-
crobial agents (Oxoid, Basingstoke, UK) were ciproflox-
acin (CIP; 5 µg), penicillin (P; 10 µg), sulfamethoxazole/
trimethoprim (SXT; 25 µg), ceftriaxone (CRO; 30 µg), tet-
racycline (TE; 30 µg), cefotaxime (CTX; 30 µg), erythromy-
cin (E; 15 µg), ampicillin (AMP; 10 µg), imipenem (IPM; 
10 µg), and gentamicin (CN; 10 µg) according to CLSI [31]. 
Tests were performed on Mueller–Hinton agar (Oxoid, 
Basingstoke, UK) supplemented with 5% sheep blood 
and incubated aerobically overnight at 37°C. The results 
were interpreted according to the Clinical and Laboratory 
Standards Institute [31]. Strains that showed resistance to 
three or more antimicrobial agents belonging to three dif-
ferent antibiotic classes were considered multi-drug resis-
tance (MDR) bacteria [32]. A multiple antibiotic resistance 
(MAR) index was calculated according to Krumperman 
[33].

Genotyping of virulence-associated genes using multiplex 
PCR

Streptococcus agalactiae strains were genotyped for the 
standard virulence genes fbsA (fibrinogen-binding pro-
tein FbsA), cfb (CAMP factor), and pbp1A/ponA (penicil-
lin-binding protein 1A), which were amplified as described 
by Kannika et al. [34] using multiplex PCR (Table 1). The 
reaction mixture contained 12.5 µl of PCR Master Mix, 1 
µl of each primer, and 3 µl of template DNA, made up with 
nuclease-free water to a final reaction volume of 25 µl. The 
amplification conditions were as follows: an initial dena-
turation of 5 min at 95°C, followed by 38 cycles of 95°C 
for 30 sec, 47°C for 30 sec, and 72°C for 30 sec, then a final 
extension of 10 min at 72°C (Table 1). The amplifications 
were examined on a thermal cycler (Applied Biosystem, 
2720 thermal cycler, USA). The amplified PCR products 
were visualized on a 1% agarose gel using a gel documen-
tation system (Hoefer PS300B life science, USA) and then 
checked using UV-induced fluorescence (Cleaver Scientific 
LTD UV gel documentation system, USA).

Results

Prevalence of S. agalactiae isolated from Tilapia

The Streptococcus species appeared as small, blueish colo-
nies with a smooth, white edge on Edward agar and trans-
lucent to slightly opaque, pinpoint colonies surrounded by 
a beta-hemolytic zone on blood agar. These bacteria were 
biochemically identified and shown to be Gram-positive 
cocci, non-motile, oxidase-positive, catalase-negative, 
and CAMP positive. Of the 300 cultured samples from 

Table 1. Oligonucleotides	and	PCR	cyclic	conditions	for	PCR	amplification	of	genes	used	in	this	study.

Target gene Primer Nucleotide sequence (5’-3’)
Target gene 

(bp)
PCR cyclic conditions Reference

Dlts

dlts-F AAGTACATGCTGATCAAGT

952

5	min	at	94°C,
35	cycles	at	94°C	for	45	sec,

66°C	for	45	sec,
72°C	for	1.5	min,	and

72°C	for	5	min

[27]
dlts-R TCTTGATCAACTTGTTGTAC

16S rRNA

F27 AGAGTTTGATCMTGGCTCAG

1485	

5	min	at	95°C,
35	cycles	at	94°C	for	30	sec,

56°C	for	60	sec,
72°C	for	60	sec,	and
72°C	for	10	min

[28]
R1492 TACGGYTACCTTGTTACGACTT

Pbp1A/ponA
Pbp1A/ponA-F AGGGGTAGTAGCATTACCAT

939 5	min	at	95°C,
38	cycles	at

95°C	for	30	sec,
47°C	for	30	sec,

72°C	for	30	sec,	and
72°C	for	10	min

[34]

Pbp1A/ponA-R CAACTATATGACTGGGATCG

Cfb
cfb-F GGATTCAACTGAACTCCAAC

600
cfb-R GACAACTCCACAAGTGGTAA

FbsA
fbsA-F AACCGCAGCGACTTGTTA

278
fbsA-R AAACAAGAGCCAAGTAGGTC
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freshwater fish (O. niloticus), 89 isolates (29.6%) were 
identified as Streptococcus spp. using routine phenotypic 
methods. The suspected Streptococcus isolates were sub-
jected to molecular identification (PCR) using species-spe-
cific dlt-s targeting S. agalactiae; almost 23.6% (21/89) 
of the suspected isolates were confirmed as S. agalactiae. 
The overall prevalence rate of S. agalactiae in all exam-
ined Tilapia samples in this study was 7% (21/300). 
Streptococcus agalactiae was isolated from 13% (13/100) 
of diseased farmed Tilapia fish and 4% (8/200) of market 
Tilapia fish (Table 2, Fig. 1). The S. agalactiae strains were 
isolated from fish samples as follows: 10 (47.6%) from the 
liver; 6 (28.57%) from the kidney; 2 (9.5%) from each eye 
and gill samples; 1 (4.85) from spleen samples.

Antimicrobial susceptibility testing of S. agalactiae

Susceptibility tests to 10 antimicrobial agents from seven 
classes of antimicrobial agents showed that the most anti-
microbial resistance of S. agalactiae strains was detected 
versus ampicillin at 95% (20/21) and erythromycin at 

95%, followed by cefotaxime and trimethoprim-sulfame-
thoxazole (76% each), ceftriaxone (72%), tetracycline 
(66%), gentamicin (62%), and penicillin (57%). Less anti-
microbial resistance was detected against ciprofloxacin, 
at 43% (9/21), and imipenem, at 5% (1/21) (Table 3). 
MDR has been observed in 90.5% of isolates tested. MDR 
was present in all S. agalactiae strains isolated from mar-
ket Tilapia but in farmed Tilapia at lower levels, of 84.6%. 
Nineteen antibiotypes were identified in S. agalactiae. The 
most predominant antibiotypes through isolates were P, 
CN, SXT, CRO, TE, CTX, E, AMP, and CIP, P, CN, SXT, CRO, CTX, 
E, AMP, at 10.5% for each antibiotype (Table 4).

Virulence associated genes in S. agalactiae strains

Three virulence genes were used to predict the virulence 
of S. agalactiae: fbsA, cfb, and pbp1A/ponA. The fbsA gene 
was detected in all isolates, while cfb was present in 76% 
(16/21) of isolates. Around half the isolates (11/21; 52%) 
carried the pbp1A/ponA gene. The fbsA and cfb genes were 
recovered from sixteen isolates, and all 3 virulence genes 
were isolated from 11 isolates (Fig. 2; Table 5).

Sequencing of the 16S rRNA of S. agalactiae 

After identifying S. agalactiae strains for 16S rRNA using 
the PCR method, sequencing of S. agalactiae strains was 
applied by Elim biopharmaceuticals (USA). The nucleo-
tide sequence of the S. agalactiae strains was deposited 
in GenBank under accession no. OL335944. Phylogenetic 
trees show the genetic relatedness among S. agalactiae 
strains according to nucleotide sequence analysis of the 
16S-rRNA gene (Fig. 3). 

Discussion

GBS is a common group of bacteria in humans and fish, 
causing meningitis in newborns, mastitis in cattle, and sep-
sis in rabbits [35]. Streptococcus agalactiae is the dominant 
species of streptococci associated with fish disease, espe-
cially in Tilapia production [36]. Streptococcus agalactiae 
causes high mortality in susceptible fish species, reaching 
50%–70% in intensive farming systems [6]. Some sero-
types of S. agalactiae from human newborns with menin-
gitis and cattle result in disease and death in infected Nile 
Tilapia [6], causing severe public health problems. To the 
best of authors’ knowledge, there is a gap in knowledge 

Table 2. Prevalence	of	Streptococcus spp	isolated	from	market	and	farmed	Tilapia	fish	samples	using	PCR	assays.

Source Farmed Tilapia Fish (No/%) Market Tilapia Fish (No/%) Total Number (No/%)

Overall	number	of	Samples 100 200 300

Number	of	Streptococcus	Isolates 34	(34%) 55	(27.5%) 89	(29.6%)

Number	of	Streptococcus agalactia 13	(13%) 8	(4%) 21	(7%)

Figure 1. PCR analysis of 16SrRNA. Lanes: 1—
MW-DNA ladder (100bp); 2—positive control; 
3—negative control; 4,5—Streptococcus agalactiae 
strains.
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considering the resistance mechanisms in S. agalactiae; 
studies from Egypt have not focused on the molecular 
characterization of GBS from O. niloticus to assess its envi-
ronmental hazard. Our study clarifies the investigation of 
S. agalactiae in both diseased and retail Tilapia fish, anti-
microbial resistance, and its role in transmitting virulence 
determinates between aquatic animals and humans via the 
food route.

The overall prevalence rate of S. agalactiae was 7% 
(21/300). The prevalence of diseased farmed Tilapia 
(13/100; 13%) was higher than that of market Tilapia 

(8/200; 4%). Previous results were consistent with ours 
in diseased farmed Tilapia [37]. However, a higher preva-
lence was found in studies of S. agalactiae from diseased 
fish from Saudi Arabia, Piura, Peru, and Thailand, of 44.4%, 
56.25%, and 30.9%, respectively [34,38,39]. In China, 
S. agalactiae has been the causative agent for more than 
90% of infected Tilapia since 2009 [40]. In Colombia and 
Brazil, S. agalactiae infection has high mortality in Tilapia 
farms [41,42]. Higher infection rates have been reported in 
Latin America and Asia [43]. In previous reports, fresh Nile 
tilapia showed a lower prevalence of infection than in our 

Table 3. Antimicrobial	susceptibility	results	of	Streptococcus agalactiae	strains	isolated	from	fish	(n	=	21).

Antimicrobial Agent Family Disc code Resistant No/(%) Intermediate No/(%) Susceptible No/(%)

Ampicillin

β-lactams

Amp 20/(95%) Zero 1/(5%)

Penicillin p 12/(57%) Zero 9/(43%)

Imipenem Imp 1/(5%) 1/	(5%) 19/(90%)

Erythromycin Macrolide E 20/(95%) Zero 1/(5%)

Cefotaxime
Cephalosporin

CTX 16/(76%) Zero 5/(24%)

Ceftriaxone CRO 15/(72%) Zero 6/(28%)

Trimethoprim/Sulphamethoxazole Sulphonamide SXT 16/(76%) Zero 5/(24%)

Tetracycline Tetracycline TE 14/(66%) 5/(24%) 2/(10%)

Gentamicin Aminoglycoside CN 13/(62%) Zero 8/(38%)

Ciprofloxacin Fluoroquinoline CIP 9/(43%) 9/(43%) 3/(14%)

Table 4. Antibiogram	and	MAR	of	Streptococcus agalactiae	strains	isolated	from	fish	(n	=	21).

Resistance pattern MAR index Isolates No. (%)

I CRO 0.1 1	(5.2)

II P,	E,	AMP o.3 1	(5.2)

III P,	CTX,	E,	AMP o.4 1	(5.2)

IV SXT,	TE,	CTX,	E,	AMP 0.5 1	(5.2)

V P,	SXT,	TE,	E,	AMP 0.5 1	(5.2)

VI P,	TE,	CTX,	E,	AMP 0.5 1	(5.2)

VII CN,	CRO,	TE,	CTX,	E,	AMP 0.6 1	(5.2)

VIII CIP,	CN,	SXT,	CRO,	E,	AMP 0.6 1	(5.2)

IX CN,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.7 1	(5.2)

X CIP,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.7 1	(5.2)

XI CIP,	P,	CN,	SXT,	TE,	E,	AMP 0.7 1	(5.2)

XII CIP,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.7 1	(5.2)

XIII CN,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.7 1	(5.2)

XIV CIP,	CN,	SXT,	CRO,	CTX,	E,	AMP 0.7 1	(5.2)

XV P,	CN,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.8 2	(10.5)

XVI CIP,	P,	CN,	SXT,	CRO,	CTX,	E,	AMP 0.8 2	(10.5)

XVII CIP,	P,	CN,	SXT,	CRO,	TE,	CTX,	E,	AMP	 0.9 1	(5.2)

XVIII P,	CN,	IPM,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.9 1	(5.2)

XIX CIP,	P,	CN,	SXT,	CRO,	TE,	CTX,	E,	AMP 0.9 1	(5.2)
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study [16,44]. In Egypt, a study from Kafr El-Sheikh, Egypt 
isolated S. agalactiae from Tilapia during the summer with 
a prevalence of 13% [45]. 

The diversity of GBS prevalence can be attributed to 
multiple factors. Tilapia under unsuitable conditions is 
susceptible to several bacterial diseases, especially S. aga-
lactiae. The contributing factors are high water tempera-
ture, high stocking density, and poor water quality due 
to high ammonia levels and low dissolved oxygen levels 
[6,46]. All outbreaks of streptococcosis in Nile Tilapia 
occurred in summer when the water temperature rose 
above 27°C [47]. High temperatures are a good environ-
ment for expressing the S. agalactiae virulence genes, lead-
ing to severe damage to fish tissue [47].

The rapidly growing antimicrobial resistance rate is a 
serious issue worldwide for human and veterinary med-
icine [43,48–51]. In our study, the susceptibility of S. 
agalactiae to 10 antimicrobials from seven antimicrobial 
classes was tested. Of these antimicrobials, S. agalactiae 
isolates showed the most potent resistance against ampi-
cillin (95%); however, lower resistance was detected 
in other reports [38,45]. The isolates studied exhibited 
greater resistance to tetracycline and penicillin (66% and 
57%, respectively) than was reported in previous studies 
[34,38,39,45,52,53–55]. Similar tetracycline and peni-
cillin resistance result was reported previously [16,22]. 

The drugs of choice for GBS treatment are penicillin and 
beta-lactams, followed by macrolides (erythromycin) used 
in individuals allergic to beta-lactams [56,57]. They are 
used in aquaculture for prophylactic or treatment purposes 
[58,59]. Almost all isolates were resistant to erythromycin, 
as reported by other authors [16,22,60]. The mechanism 
of resistance against erythromycin in the bacteria includes 
changes of the ribosomal target by a methylase [49,59]. It 
is important to search for other options for infection con-
trol [50,59].

In our study, a lower rate of sensitivity to trimetho-
prim/sulfamethoxazole (24%) was detected in our 
study. However, other studies found higher sensitiv-
ity rates [34,39]. Our results showed higher resistance 
against gentamicin (62%), as reported in several reports 
[15,21,51,59]. However, other studies found lower levels 
of resistance [16,22]. Gentamicin affects the survival of 
bacteria by preventing the binding of its messenger RNA, 
which causes misreading of its DNA and changes to the 
proteins it makes.

Antimicrobial resistance against quinolones and 
third-generation cephalosporins was about 40% and 75%, 
respectively. This result was different from those of other 
studies into the antimicrobial sensitivity of S. agalactiae to 
third-generation cephalosporins [38,45]. Fluoroquinolone 
resistance has increased lately, and this increase has been 

Figure 2. Multiplex PCR analysis of Streptococcus agalactiae virulence genes showed MW-DNA 
ladder (100 bp), fbsA gene (278 bp), cfb gene (600 bp), and pbp1A/ponA gene (939 pb).

Table 5. Prevalence	of	virulence	genes	in	Streptococcus agalactiae	isolated	from	market	and	farmed	Tilapia	fish	
samples.

Virulence genes Farmed Tilapia Fish No (%) Market Tilapia Fish No (%) Total number (%)

fbsA	gene 13	(61.9%) 8	(38.09%) 21	(100%)

cfb	gene 10	(47.62%) 6	(28.57%) 16	(76%)

Pbp1A/ponA	gene 7	(33.33%) 4	(19.05%) 11	(52%)
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attributed to many causes, such as efflux mechanisms 
or mutations in the quinolone-resistance-determining 
regions [54,55]. Non-guided and inaccurate use of antibi-
otics has resulted in many problems, such as resistance, 
and can affect the safety and quality of food [55,59]. This 
is a big problem for public health because of the spread 
of MDR in human communities, hospitals, animal farming, 
and veterinary medicine. It has become a problem for pub-
lic health all over the world.

In this study, one of each of the three functional catego-
ries of virulence genes—adhesins, invasions, and immune 
evasions—was characterized in all isolates to determine 
their pathogenic and invasive abilities. At least two viru-
lence genes were identified in the S. agalactiae isolates. The 
fbsA gene, responsible for an adhesion protein on the bac-
terial surface, promoted adhesion to and invasion of host 
cells [57,59] and was detected in our isolates. This gene 
was not expressed in all isolates in a study from Thailand 
[37]. The cfb gene, which encodes CAMP factor, a secreted 
pore-forming protein causing lysis of red blood cells, was 
carried by 76% of isolates. Thus, the hemolysis caused 
by the CAMP factor can be used for the phenotypic char-
acterization of S. agalactiae. The penicillin-binding pro-
tein A encoding gene (pbp1A/ponA), which was detected 
in almost half of the isolates, leads to enhancement of the 
resistance of the host to antimicrobial peptides. Previous 

studies have seen the three virulence genes in all S. aga-
lactiae isolates [34,44]. Understanding pathogenesis in 
aquatic outbreaks is complex because it is a process that 
involves both bacterial virulence genes and other related 
factors. Characterization of the patterns of virulence genes 
will help determine the genetic diversity of Streptococcus 
spp. and understand the genetic relatedness between bac-
terial virulence and host adaptations [60].

Conclusions

Intensive cultivation systems with poor environmental 
conditions are related to the high mortality of fish, caus-
ing severe economic losses. Thus, special monitoring 
programs, efficient sanitary measures, and constant mon-
itoring are essential in controlling and treating GBS. MDR 
is an emerging global threat, limiting our options for treat-
ment of GBS infections due to uncontrolled use of antibi-
otics, which must be controlled to limit the emergence of 
MDR strains in the environment.
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