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ABSTRACT
Cryptosporidium is a primary cause of waterborne epidemics, despite being previously consid-
ered only an opportunistic pathogen. The disease is associated with significant economic losses 
in humans and animals that are brought on by diarrhea, which frequently causes dehydration. 
Contact with diseased people or animals, as well as polluted water, is the major cause of infec-
tion. Different drugs are used to control the parasites. Nitazoxanide (NTZ), which is an anti-pro-
tozoan and anti-viral drug, can be used to control helminths, viruses, and protozoan parasites 
as a broad-spectrum antibiotic and has been approved by the food and drug authority (FDA). 
However, the problem is the development of resistance over a period of time in these para-
sites. Nanoparticles have received significant attention as possible anti-parasitic agents in recent 
years. By directing medications to specific cellular locations, targeted drug delivery minimizes 
the side effects of medications. Nanoparticles have demonstrated effectiveness against different 
Cryptosporidium species. Nanoparticles loaded with NTZ are found to be an effective remedy for 
C. parvum in young ones and decrease the oocyst count shed in the stools. Additionally, silver 
nanoparticles have proven to be effective against C. parvum by releasing silver ions that breach 
the cell wall of the oocyst, causing the escape of intracellular contents and the destruction of 
sporozoites within the oocyst. Implementing tiny particles for the purification of consuming water 
from Cryptosporidium is an economical and environmentally sustainable process. However, the 
use of nanoparticles in medicine requires more research.
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INTRODUCTION

Cryptosporidium  parasites infect the digestive systems 
of many vertebrates. They are grouped into the phy-
lum Apicomplexa. Cryptosporidium (C) causes diarrhea, 
and the disease is referred to as cryptosporidiosis [1–3]. 
With Cryptosporidium, 41 species and more than 60 gen-
otypes are documented [4–6]. According to reports, 
Cryptosporidium is the second most common reason why 
newborns under the age of two get mild or serious diar-
rhea, behind rotavirus [7]. Cryptosporidiosis has public 
health significance because Cryptosporidium species are 
notorious for diarrhea caused by traveling [8,9] and are 
also accountable for diarrhea epidemics associated with 

water resources, e.g., waterparks, and municipal water 
supply [10,11]. In consumers, C. hominis and C. parvum are 
among the most common organisms, although C. parvum 
also infects ruminants [12]. The organisms C. hominis and 
C. parvum result in approximately a million human fatali-
ties annually [13]. C. parvum is claimed to cause numerous 
financial losses due to its high mortality rates, lower effi-
ciency, and costly medical care [14]. In developing coun-
tries, infection negatively affects malnourished children, 
retards their growth, causes hindrance in weight gain, 
and impairs physical development. The impact of cryp-
tosporidiosis on animals can differ based on factors such 
as species, age, and overall health. In typical animals, the 
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infection tends to be self-limiting and resolves within a 
week. However, in animals with weakened systems and 
pregnant animals, the infection may have more severe con-
sequences, like weight loss, dehydration, and potentially 
even mortality [15].

This protozoon impacts not just individuals and wildlife 
but also a variety of birds. C. meleagridis, C. baileyi, and C. 
galli are pathogens that cause disease specifically in birds 
[16]. C. meleagridis and C. galli impact the digestive system 
and cause different levels of enteritis. C. galli infects and 
develops lesions in the proventriculus of poultry [17,18]. 
C. baileyi shows different clinical forms of the disease: respi-
ratory, enteritis (digestive), and renal. It develops lesions 
in various organs like the gut, the kidneys, urinary tract, 
trachea, bronchi, air sacs, nasopharynx, conjunctiva, and 
bursa of Fabricius. Among birds, infection is frequently 
responsible for higher rates of death and illness [19,20] 
and has great economic importance. The life stages of 
Cryptosporidium are complicated and involve a single host 
for both sexual and asexual stages. Thick-walled oocysts 
are resistant to adverse environmental conditions and con-
taminate the water sources that are accidentally ingested 
by humans, animals, or birds [21,22]. The acidic environ-
ment of the intestine stimulates the excystation of oocysts, 
and sporozoites are released [23,24]. Sporozoites attach to 
the host’s cells of epithelial tissue and cause a parasitopho-
rous vacuole to form. The parasite passes through differ-
ent developmental forms like trophozoite, Type I meront, 
Type I merozoite, Type II meront, and Type II merozoite 
[1,25,26]. Type II merozoite forms microgamont (male) 
and macrogamont (female), which are round in shape and 
vary in size from 4 to 6 µm [27,28]. Microgametes fertilize 
the nearby macrogamont, which develops into a diploid 
zygote. Within the intestinal lumen, these zygotes develop 
into oocysts, which either re-infect the same host or may 
be excreted from the body through feces into the external 
environment.

Treatment of disease involves various drugs like 
nitazoxanide (NTZ), paromomycin, azithromycin, a com-
bination of azithromycin and paromomycin, and rifaximin. 
NTZ is a US Food and Drug Administration (FDA)-approved 
drug whose active chemical is nitrothiazolyl-salicylamide 
[29]. The drug is an anti-protozoan/anti-viral agent that 
has wide-spectrum antibacterial activity against viruses, 
bacteria, helminths, and protozoan parasites [30–32]. It is 
effective in mild infections but does not give good results 
in moderate and heavy infections [33,34]. Paromomycin 
belongs to the group aminoglycosides, and it is found effec-
tive in children and adults to treat different levels of infec-
tion [35–37]. Paromomycin decreases the protozoa and 
oocysts shedding in stools and treats diarrhea. Though it 
does not eliminate the infections, symptoms appear again 
in half of the patients [38,39]. Azithromycin is an antibiotic 

that belongs to the macrolide group and has been found 
effective in some infections [40–42]. Rifaximin is an FDA-
approved antibiotic that is used to treat travelers’ diarrhea 
[43–45]. Unfortunately, its action is restricted to people 
who are most at risk for serious illness. In recent years, 
researchers have initiated numerous initiatives to identify 
secure and effective parasite therapies. Here, we discuss 
many novel targeted mechanisms for treating cryptospo-
ridiosis, along with current and emerging therapeutic 
approaches.

Need for nanotechnology

In spite of primary research efforts, to this point, since 
most parasitic infections do not elicit a strong immune 
response, there is currently no vaccine that is successful 
against any of the majority of common parasitic illnesses. 
Subsequently, the use of anti-parasitic agents is a very 
important strategic tool for fighting parasitic infections 
[46,47]. However, researchers instituted anti-parasitic 
drugs more than 50 years ago. Furthermore, while some 
drugs are efficient, the majority of anti-parasitic medica-
tions fall well short of the modern definition of a “drug” 
when it comes to acceptability and treatment, the duration 
of the remedy, precision, and the consent of the patient 
[48]. In contradiction, the cost of the latest drug devel-
opment and drug discovery against parasitic infections is 
extremely low in comparison to the many other fields of 
study. In actuality, just 1% of the 1223 novel medications 
that were introduced to the marketplace between 1975 and 
1996 were created specifically for the treatment of tropical 
invading parasitic infections like trypanosomiasis, malaria, 
and leishmaniasis. Until 2000, researchers allocated just 
0.1% of global health research funding to the search for 
anti-parasitic drugs, reflecting a lack of concern for infec-
tions caused by parasites. So, coming up with new ways 
to give currently available anti-parasitic drugs that make 
them more effective, more accurate, easier to tolerate, and 
able to treat a wider range of parasitic diseases is a great 
idea that might help stop the disease pandemic [49,50]. 
Given the commonness of parasitic diseases and the bad 
side effects that come with current anti-parasitic drugs, it 
is important to look into new drugs that are highly effective, 
don’t cause side effects, and are not too expensive. Certain 
limitations afflict conventional preparations such as sus-
pension or emulsion. There may be a need for a few inno-
vative providers who can perfectly meet the requirements 
of a drug-transporting device due to factors like excessive 
dosage and low accessibility, first bypass impact, intoler-
ance, instability, and variations in plasma drug degrees. 
Currently, nanoparticle delivery machines have been pro-
posed as colloidal drug carriers. Nanoparticles may show 
size-related characteristics that vary extensively from the 
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ones discovered in materials found in bulk and fine par-
ticles [51]. The key properties of nanoparticles are: (1) 
increased bioavailability by improving aqueous solubility; 
(2) increasing ½-lives for elimination from the body; (3) 
increasing specificity for their specific receptors; and (4) 
placing the drug wherever it acts within the human body. 
This results in a gradual decrease in the amount of drug 
needed and the toxicity of drugs, permitting the secure 
delivery of toxic drugs and the protection of surrounding 
tissues and cells from being damaged [52]. Therefore, in 
this review, we discussed various nanoparticles that were 
used against C. parvum parasites.

Nanoparticles

With time, nanoparticles have drawn great attention. 
Nanoparticles are the basic component of nanotechnol-
ogy, and their dimensions vary between 1 and 100 nano-
meters (nm). Scientists synthesized nanoparticles from 
organic material, metals like carbon, and metal oxides 
[53]. Nanoparticles are available in different dimensions, 
shapes, and sizes in addition to their material [54]. They 
can be single-dimensional, like graphene, two-dimensional 
in nature, like carbon nanotubes (CNT), three-dimensional, 
like gold nanoparticles, or zero-dimensional, like nanodots. 
Their shapes range from spherical to cylindrical, tubu-
lar, conical, hollow core, spiral, and flat. They can also be 
crystalline, with homogeneous, regular surfaces, or amor-
phous, with uneven surfaces [55]. Nanotechnology has a 
vast range of applications in medicine, cosmetics, crockery, 
electronic appliances, and the aerospace industry.

Types of nanoparticles

There are different kinds of particles organic, inorganic, 
and metal-based. 

Organic nanoparticles

The polymers of ferritin, liposomes, dendrimers, and 
micelles are known as organic nanoparticles. These par-
ticular nanoparticles are biodegradable, stable, non-toxic, 
and capable of transporting drugs. The hollow centers of 
liposomes and micelles, referred to as nanocapsules, are 
radiation, light, and heat sensitive [56,57]. These special 
properties make them a good medium for the delivery of 
drugs. These types of nanoparticles are commonly used 
in medical fields because they are efficient. In targeted 
drug delivery systems, nanoparticles are administered to 
specific organs of the body. The properties of nanoparti-
cles depend upon the composition of the material, shape, 
size, flexibility of the material, and surface quality [58]. 
Nanoparticles are composed of various materials, i.e., 
lipids, and a vast range of synthetic polymers of various 

compounds. The most popular artificial polymers that are 
utilized to create nanoparticles are poly (lactic-co-glycolic) 
acid (PLGA), dextrans, and polyanhydrides, while natu-
ral polymers include elastin-like polypeptides. The use 
of these nanoparticles depends on the method of prepa-
ration, their toxicity, and their compatibility with loaded 
drugs [59]. Nanoparticles are modified by binding with 
ligands to their surface, e.g., peptides, antibodies, aptam-
ers, and then applied to specific tissues like cancer cells 
[60,61]. The efficiency of nanoparticles also depends on 
their shape and structure. The efficiency of rod-shaped 
nanoparticles on targeted tissues is higher than that of 
spherical nanoparticles [62,63]. 

Inorganic nanoparticles

There are no carbon atoms in nanoparticles that are 
inorganic. They are further categorized into metal-based 
and metal oxide-based nanoparticles. Metal-based 
nanoparticles are prepared by converting the metals into 
nanoparticles either through constructive or destructive 
methods. All kinds of metals can be used for the forma-
tion of nanoparticles [64]. Nanoparticles are synthesized 
commonly from gold (Au), silver (Ag), zinc (Zn), lead (Pb), 
copper (Cu), cobalt (Co), cadmium (Cd), and aluminum 
(Al). These nanoparticles have specific characteristics 
like high surface charge, pore size, surface area-to-volume 
ratio, and surface charge density. Characteristics of differ-
ent nanoparticles vary; e.g., aluminum nanoparticles show 
sensitivity to heat, sunlight, and moisture, have a large 
surface area, and are unstable [65]. Furthermore, silver 
nanoparticles exhibit lower reactivity and can serve as 
effective disinfectants and antimicrobial agents [66]. Gold 
nanoparticles are highly reactive and unstable [67]. Copper 
nanoparticles (CuNPs) are flammable solids, conductors of 
heat and electricity, and ductile [68]. Zinc nanoparticles 
are resistant to corrosion, can be employed in treating bac-
terial and fungal infections, and provide protection against 
ultraviolet radiation [69]. Cobalt nanoparticles are highly 
unstable, toxic, and can absorb magnetic waves and micro-
waves [70]. Metal oxide nanoparticles are formed by the 
modification of their corresponding metal-based nanopar-
ticles. At room temperature, nanoparticles of iron (Fe) oxi-
dize to iron oxide (Fe2O3) in the presence of oxygen. Metal 
oxide nanoparticles are formed when there is an increase 
in their reactivity and efficiency [71]. Aluminum oxide 
(Al2O3), cerium oxide (CeO2), iron oxide (Fe2O3), magnetite 
(Fe3O4), silicon dioxide (SiO2), titanium oxide (TiO2), and 
zinc oxide (ZnO) [72–75]. In contrast to the corresponding 
metals, these small particles have unique characteristics.

Carbon-based nanoparticles

Carbon atoms are an integral part of carbon-based 
nanoparticles. Graphene, fullerenes, nanotubes of carbon 
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(CNT), carbon black, carbon nanofibers, and carbon that 
are activated are the different types of carbon nanoma-
terials. Fullerenes (C60) are composed of carbon atoms. 
Fullerene molecules are round in form. There are about 
28–1,500 atoms of carbon aggregated with each other by 
sp2 hybridization to form fullerenes. The diameters of the 
single-layered and multi-layered fullerenes are 8.2 nm and 
4–36 nm, respectively [76]. It is a carbon allotrope. The 
diameter of a graphene sheet is approximately 1 nm. It is 
a two-dimensional, hexagon-shaped honeycomb structure 
network composed of carbon atoms [77]. CNTs are formed 
by winding a graphene nanofoil with a honeycomb-like 
shape made of carbon atoms into elongated cylinders. 
Scientists form CNTs by winding the graphene nanofoil 
into elongated cylinders. A single-layer CNT has a diame-
ter of 0.7 nm, while multi-layered CNTs have a diameter 
of 100 nm. CNTs range in dimension from various milli-
meters (mm) to a few micrometers (µm). Half-fullerene 
molecules may seal both ends of a CNT. This material—
nanofoils wound into an oval or cup-shaped substitute for 
standard cylindrical tubes—makes up carbon nanofiber. 
Nanotubes of carbon are comparable to these. Made of car-
bon, carbon black is a kind of amorphous substance. The 
size of it ranges from 20 to 70 nm, giving it an elliptical 
form. Because of the particles’ strong reactions and inter-
actions, carbon black particles were created [78]. 

Applications 

Numerous uses have developed for nanoparticles but 
they are mostly desirable in medicine and drug delivery 
systems.

Medicine 

Nanotechnology is a recent advancement in the medical 
field. Nanoparticles deliver drugs specifically to body cells 
[79]. We can minimize the side effects of drugs by placing 
them in a specific area. This method decreases the amount 
of drug, cost, and side effects. Nanotechnology helps in tis-
sue engineering and reproduction. Nanotechnology can be 
used to replicate broken tissue and reconstruct it, a pro-
cess known as the tissue engineering method. Tissue engi-
neering has replaced the traditional methods of treatment, 
e.g., artificial implants and organ transplants. The develop-
ment of bone-based CNT scaffolds is a particularly notable 
example [80]. Nanoparticles speed up the healing process, 
so they can be used as antiseptics, e.g., silver nanoparticles. 
Silver nanoparticles are also used to control bacteria and 
fungi and act as an antibacterial agent. Silver nanoparticles 
are highly effective against bacteria and fungi, which are 
resistant to drugs, and their sensitivity varies according 
to each species [81]. These nanoparticles show high effi-
cacy against MRSA (methicillin-resistant Staphylococcus 

aureus), Streptococcus pyogenes, and methicillin-resistant 
Staphylococcus epidermidis. Silver nanoparticles break 
down the cell walls of these bacteria, e.g., Klebsiella pneumo-
nia and Salmonella typhi. So, they are less effective against 
them [82]. A combination of chitosan (CS)-Ag nanoparti-
cles has high potency to fight against Escherichia coli and is 
less effective against Candida albicans, which is due to vari-
ations in the structural composition of the outer wall of the 
cell and the presence of different functional groups around 
the cell wall of various types of bacteria [83]. Ag NPs work 
by attaching themselves to cells, breaking down enzymes 
and nucleic acids, and producing harmful free radicals and 
reactive oxygen species (ROS) that cause oxidative stress 
[84–87]. They function by inhibiting the synthesis of bio-
films and the destruction of bacteria in previously formed 
biofilms [88]. The combination of Ag NPs and Quercetin 
has a synergistic effect and is also safe to use as an antibac-
terial against E. coli and S. aureus [89]. 

Drug delivery system

Nanoparticles are utilized for the delivery of different med-
icines to target sites. The antibacterial effect of drugs can 
be enhanced by their loading and conjugation with the 
nanoparticles. Naegleria fowleri, the causative organism of 
meningoencephalitis, can be cured by using Amphotericin 
B, Fluconazole, and Nystatin loaded on Ag NPs [90]. The 
increase in the efficacy of drugs is due to an increase in 
their total amount and their availability in the targeted 
tissue. The toxicity of Ag NPs can be reduced by the slow 
release of silver ions in the host cells [91]. Ag NPs loaded 
with oseltamivir are highly effective against influenza virus 
strain H1N1 because the antiviral activity of oseltami-
vir is enhanced due to the generation of ROS [92]. Silver 
nanoparticles can also be used to control Chagas disease, 
which results in extensive necrosis caused by Trypanosoma 
cruzi prepared from the reducing agent Xylan [93]. Drugs 
conjugated with silver nanoparticles show more efficiency 
than drugs used alone and are also less harmful and toxic 
to host tissues [94]. Silver nanoparticles are synthesized 
using plant hexane extracts from Phaselous coccinus. Ag NPs 
inhibit the penetration of host cells by a virus that enhances 
their antiviral character against COxB4, HAV-1, and HAV-10 
[95]. Figure 1 illustrates the applications of nanotechnol-
ogy in different fields, i.e., gene therapy, tissue engineering, 
drug delivery, biosensing, anti-parasitic antimicrobials, 
wound healing, cartilage repair, and bone repair.

Scientists have been using nanoparticles for various 
purposes in recent years, particularly as anti-parasitic 
agents [96–99]. In medicine, the extensive use of Chitosan 
Nanoparticles (CS NPs) is due to their compatibility with 
the environment and their bacteriostatic characteristics 
[100,101]. CS particles are prepared from N-acetyl-d-
glucosamine and d-glucosamine subunits. Chemically, CS 
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NPs  are polysaccharides that are formed by the deacetyla-
tion of chitin in a basic environment. They have no adverse 
effects, can be used as antitumor, antibacterial, and anti-
fungal agents, are involved in wound healing, and act as 
immune system stimulants [102,103]. In nanomedicine, CS 
NPs are most preferably employed for the loading of drugs 
due to their specific characteristics for carrying drugs, 
which also increase the availability of drugs at target sites 
and the duration of their action. They can solubilize in an 
aqueous medium and produce positively charged ions. 
This property allows for their most common and efficient 
use with greater success [104]. It also increases the perme-
ability of molecules through various surfaces, like mucosal 
surfaces [105]. The oocysts of Cryptosporidium are resis-
tant to the environment, have high stability, and continue to 
thrive for a longer duration of time, up to 12 months, which 
is why they produce most waterborne diseases [106]. The 
oocyst wall of Cryptosporidium is very resistant and hard, 
and it requires a longer duration of time for the action of 
CS NPs for their complete elimination. There is a positive 
charge on the surface of CS NPs and a negative charge on 
the oocyst wall of Cryptosporidium, which is why they stick 
to each other firmly, and this phenomenon increases the 
duration of action of nanoparticles, which is highly toxic 
for Cryptosporidium oocysts. They interact with nucleic 
acids, disrupt their helical structure, and also produce ROS 

that impose oxidative stress and lead to oocyst inactivation 
[107,108]. Figure 2 explains the mode of action of CS NPs.

NTZ causes a remarkable decrease in the shedding of 
oocysts in immunosuppressed and immunocompetent 
mice. On the 11th day, the percentage decrease in oocyst 
passing in immunocompetent and immunosuppressed 
groups is 42.01% and 32.42%, respectively, and on the 
19th day, the reduction percentage is 57.1% and 41.06%, 
respectively [30]. CS NPs loaded with NTZ are a very effec-
tive remedy for C. parvum in young ones and decrease the 
number of parasites shedding in the environment [109]. 
Conjugation of CS nanosuspension with Bupravaquone 
will increase the duration of the drug in the intestine and 
its availability, which is why this combination is more 
effective as compared to Bupravaquone alone [110,111]. 
The mucoadhesive property of CS NPs is responsible for 
enhancing the duration and improved action of drugs in 
the digestive tract and decreasing their excretion from 
the gut. In the gastrointestinal tract, CS NPs attach to the 
intestinal wall and attack the pathogen directly [112]. 
Praziquantel loaded on CS NPs is a very effective treatment 
for larval and mature stages of Schistosoma with a half-
dose rate [113].

C. parvum continues to shed oocysts for 30 days in Swiss 
albino mice [114]. It is also reported that oocysts can be 
shed for up to 3 weeks in this study [115]. When  severe 

Figure 1.  Application of nanoparticle against Cryptosporidium.
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infection occurs with Cryptosporidium, watery diarrhea is 
tenacious and lasts for five weeks [116]. It is reported that 
CS NPs along with Nigella sativa (black cumin) reduce the 
shedding of oocysts and limit their spread both in immuno-
competent and immunosuppressed mice on the 27th day 
after infection, with a reduction percentage of 79.16% and 
73.33%, respectively [111,117]. CS NPs reduce the shed-
ding of oocysts at 18 days after infection in immunocom-
petent and immunosuppressed mice by 17.3% and 11.7%, 
respectively [111]. N. sativa has various therapeutic effects 
like antioxidant, neuroprotective, immunopotentiation, 
antiasthmatic, antitumor, anti-inflammatory, and antimi-
crobial [118]. It is revealed that the seeds of N. sativa act as 
phytotherapeutic agents against plasmodium and also have 
antioxidant properties [119]. N. sativa extracts, in combina-
tion with honey, can treat cutaneous leishmaniasis (CL) bet-
ter than honey alone [120]. A combination of N. sativa with 
CS NPs decreases the number of parasites by 77.5% [113]. 
CS NPs result in a reduction of parasite counts in the brain, 
spleen, and liver by 6.42%, 17.66%, and 23.94%, respec-
tively, in mice infected with the Toxoplasma RH strain [121]. 
CS NPs combined with polyvinyl alcohol are used to break 
the link between Cryptosporidium sporozoites and the cells 
of the intestine in vitro and CS NPs show high efficiency 
against Cryptosporidium [122]. CS NPs conjugated with 
NTZ decrease the number of deaths in immunosuppressed 
mice compared to the untreated control group [121].

Therapeutic effects of various drugs are determined by 
evaluating the different histopathological improvements in 
the liver, intestine, and lungs in intestinal and extra-intes-
tinal forms of Cryptosporidium infection. In cryptosporid-
iosis, there is shortening and then destruction of the villi 
of the small intestine, intensive inflammation, ulcers on 
the mucosal surface, and complete loss of the brush bor-
der, so absorption of nutrients does not occur. Dysplastic 
changes in the intestine were also observed [114,123,124]. 
Specific toxins produced by pathogens adversely affect the 
epithelial cells and lead to the atrophy of villi and com-
plete loss of brush borders [125]. NTZ alone can be used 
for the treatment, but it shows a mild improvement in the 
pathological condition of the intestine [126]. However, 
the combination of CS NPs with NTZ causes significant 
improvement in the pathological changes by rejoining 
the atrophied intestinal villi and also improving the liver 
picture. Immunocompetent mice show better results as 
compared to immunosuppressed mice [124]. Table 1 
illustrates the efficacy of different nanoparticles against 
Cryptosporidium parvum oocysts.

Use of silver nanoparticles (Ag NPs)

Silver nanoparticles show high efficacy in fighting against 
various pathogens and advancements in the field of sci-
ence. Ag NPs are used in medicine and are capable of 
controlling bacteria, fungi, and protozoa [139–141]. The 

Figure 2.  Mode of action of chitosan nanoparticles against Cryptosporidium oocyst (created by bio render).
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Table 1.  Efficacy of different nanoparticles against Cryptosporidium parvum oocysts. 

Nanoparticle Country Test used Sample extracted 
Concentration/

dose rate
Results/efficacy Reference

Silver nanoparticles 
United 
Kingdom

Counting 
of oocyst, 
sporozoites, and 
empty shells by 
PCM.

Fecal sample 500 µg/ml
Reduction in oocyst count 
83.3% ± 3% to 33.3% ± 
17.5%.

[127]

Chitosan nanoparticles 
loaded with 
nitazoxanide 

Egypt Oocyst count Fecal sample
200 mg/ml CS NPs 
loaded with NTZ

The reduction percentage 
in oocyst is 75.7%.

[128]

Chitosan nanoparticles Egypt

Oocyst shedding 
by using Modified 
Ziehl-Neelson 
stain

Fecal sample 

500 µg/ml
1500 µg/ml
3000 µg/ml
5000 µg/ml 
7000 µg/ml

Oocyst destruction rate is 
68.88%
86%
91%
97.3%
99.87% at different dose 
rate mentioned in previous 
column after 72 h of 
exposure.

[122]

Gold nanoparticles Thailand
Oocyst count by 
HPF.

Stool sample 1cc 
Oocysts reduce from 8.8 
± 1.2 oocysts/HPF to 4.7 ± 
1.2 oocysts/HPF.

[129]

Silver nanoparticles Egypt Oocyst count Water sample 0.1 ppm
Reduction percentage in 
oocyst count is 87% at 30 
min of exposure.

[130]

Chitosan nanoparticles China Oocyst count Fecal sample 1 mg/Kg/day

Reduction percentage in 
oocyst count is observed 
75.54% (4275.90 ± 703 
oocyst)

[131]

Silver nanoparticles Egypt Oocyst count Fecal sample 5 mg/Kg/day

Oocyst reduced from 
13733 ± 3885 at 14 days 
post-infection to 247 ± 94 
at 28-day post infection.

[132]

Gold nanoparticles Canada Oocyst count Fecal sample 25 µL
Significant reduction in 
oocyst count.

[133]

Silver nitrate 
nanoparticles

America Oocyst count Stool sample 100 mg/L

The mean no. of oocysts 
per 10 mg stool is 101.9. 
Statically significant 
reduction in oocyst count. 
Modification of excystation 
behavior is 90%. 

[134]

CP2-NP-906
Poly lactic-co-glycolic 
acid (PLGA) loaded 
with compound 
thymidylate synthase-
dihydrofolate 
reductase (TS-DHFR) 
conjugated with 
Cryptosporidium 
specific proteins (CP2).

USA

Cell culture to 
estimate the anti-
parasitic effect on 
sporozoites and 
intracellular forms.

Cryptosporidium infected 
cells.

Size of 
CP2-NP-906 is 100 to 
300 nM for delivery 
of drug.

Reduction in the level of 
parasites is by 200-fold in 
cell culture. 

[135]

Silver nanoparticles Egypt
Oocyst count by 
SEM.

Fecal sample  0.54–1mg.
LC50 for 3 h of exposure is 
0.54–1 mg.

[136]

Copper nanoparticles 
(CuO)

Egypt
Oocyst count by 
SEM.

Fecal sample  0.72mg.
LC50 for 3 h of exposure is 
0.72 mg.

[136]

(Continued)
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Nanoparticle Country Test used Sample extracted 
Concentration/

dose rate
Results/efficacy Reference

Indinavir loaded 
modified nanoparticles 
(Ab-TMR-
IND-Np). Anti-
Cryptosporidium IgG 
polyclonal antibody 
conjugated with 
tetramethylrhodamine 
labelled nanoparticle 
(D,L-lactide-co-
gycolide).

Italy
Histogram of 
human cell line is 
examined by IFA.

HCT-8 cells (Human 
ileocecaladenocarcinoma 
tumor cell line).

50 µM Ab-TMR-
IND-Np to the HCT-8 
cells at the time of 
oocyst addition.
50 µM Ab-TMR-
IND-Np added to 
cryptosporidium 
infected cells.

Complete inhibition of 
oocyst excystation and no 
infection occur.
The reduction percentage 
of intracellular parasites 
depends upon the time 
of exposure i.e. 25%–30% 
after 24 h, 51% after 48 h, 
67% after 72 h, and 70% 
after 96 h. 

[137]

Chitosan NAG 
nanoparticles 
(N-acetyl-d-
glucosamine units) and 
chitosan Mix

USA IFA

Human ileocecal 
adenocarcinoma 
cells (HCT-8 cell line) 
and human colonic 
adenocarcinoma cells 
(Caco-2 cell line).

500 µg/ml of 
chitosan NAG and 
Chitosan mix.

Chitosan NAG reduces level 
of parasites in HCT-8 61.2% 
and Caco-2 44.1%.
Chitosan mix reduces 
intracellular forms in HCT-8 
78.8% and Caco-2 67.9%. 
Paromomycin sulphate 
reduces the level of 
intracellular parasites in 
HCT-8 44.7% and Caco-2 
32.9%.

[138]

Abbreviations: Scanning electron microscope (SEM), High Power Field (HPF), Immuno fluorescent Assay (IFA), Phase contrast microscopy (PCM), HCT-8 cells 
(Human ileocecaladenocarcinoma tumor cell line).

mechanism of action of Ag NPs to fight against bacteria 
and parasites involves the formation of silver ions (Ag+), 
which results in the production of ROS and leads to oxida-
tive stress [142]. Moreover, nanoparticles are small, which 
provides a greater surface area and a longer duration of 
contact for binding to the bacteria. It leads to the slow 
release of silver ions and then triggers ROS [143]. Ag NPs 
act on C. parvum by releasing silver ions, which enter the 
oocyst by breaking the cell wall and causing the expulsion 
of all intracellular contents and the destruction of sporo-
zoites within the oocyst. The use of nanoparticles for the 
purification of drinking water is a cost-effective and envi-
ronmentally friendly procedure [127,144,145]. Ag NPs 
kill bacteria by exerting their antibacterial effect through 
cytotoxic and cell-inhibitory action [146]. Ag NPs are also 
used to control various protozoa like Leishmania, Giardia, 
Entamoeba, Toxoplasma, Plasmodium, and insect larvae 
and helminths [112,147–149]. Ag NPs decrease the spread 
of Leishmania parasites by blocking their metabolic action 
and the destruction of promastigotes [150]. There are var-
ious mechanisms by which AgNPs cause the destruction 
of the oocysts of Cryptosporidium species. Glycoprotein 
and lipophosphoglycan, responsible for virulence, are 
destroyed by the formation of ROS and consequently due 
to oxidative stress. This leads to the oocysts becoming 
inactive and may not cause parasitic infection [151]. The 
size of nanoparticles is very small, so they can readily move 
throughout the cellular membrane, lead to adverse effects 
on parasites, and result in their killing [152]. Ag NPs can 

cause toxic effects by binding with the molecules of DNA 
and destroy the double-helical structure by disrupting the 
cross-linkage of DNA strands, as shown in Figure 3 [153]. 
Nanoparticles also interrupt normal biochemical reactions 
[154]. Silver nanoparticles can decrease the number of 
oocysts and their duration of survival in the environment, 
which reduces their propagation to new hosts.

Table 2 describes the activity of oocysts of C. parvum 
exposed to the silver nanoparticles and the control group, 
which are not treated with Ag NPs for different durations of 
exposure. Mortality and activity of oocysts exposed to vari-
ous concentrations of Ag NPs for different intervals of time 
and in the control group (p < 0.05) show significant variation. 
If the Ag NPs are exposed to oocysts for 1 to 4 h at a dose rate 
of 0.05 ppm, they show better results than if exposed for 30 
min. The percentage reduction in oocyst activity at different 
exposure times (30 min at 1 ppm and 2 h at 0.05 ppm) is 
97.3% and 78.3%, respectively [130]. This shows significant 
reduction percentages, which are given in the table.

Different concentrations of Ag NPs can be used to limit 
the viability of oocysts, as the maximum reduction per-
centage can be observed at a dose rate of 1 ppm and the 
minimum reduction percentage is reported at 0.05 ppm. It 
is described that a wide range of doses are used to render 
the oocysts inactive, from 0.005 to 500 µg/ml, in a dose-de-
pendent manner [127]. Exposure to Ag NPs reduces their 
feasibility in feces and their further propagation [155]. 
Nanoparticles also disrupt the structure of the oocyst’s cell 
wall, rendering them inactive. It is reported that low-dose 
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Ag NPs with smaller sizes show more stimulatory effects 
than large-size nanoparticles. Ag NPs are available most 
commonly in the range of 8.2 to 42.1 nm. The toxic effects 
and availability of nanoparticles for the purification of 
water are changed by the presence of fecal material, 
organic contaminants, and heavy metals [127,156]. Higher 
concentrations of chlorides combine with the Ag NPs and 
form insoluble aggregates, which decrease the exposure 
time of the pathogen to the nanoparticles and reduce its 
antiparasitic effects against C. parvum [157,158].

Use of copper and gold nanoparticle

CuNPs have anti-microbial activity against various types of 
bacteria, e.g., Salmonella enteric, S. aureus, Campylobacter 
jejuni, E. coli, Listeria monocytogenes, Aspergillus  niger, 
etc. [159–161]. The copper oxide nanoparticles can be 
employed for the control of parasites with an inhibitory 
concentration (IC50) of 0.13 mg/l for Entamoeba histolyt-
ica and 0.72 mg/l for C. parvum [155]. It is also reported 
that exposure to copper oxide nanoparticles for 180 min 
at a concentration of 0.6 mg/ml can render 97% of Giardia 

Table 2.  Exposure of Ag NPs for different duration of time and 
reduction percentage in Cryptosporidium viability.

Ag NPs 
Dose rate

Duration of 
exposure

Mortality (%) 

Viability of Cryptosporidium 
oocyst

Exposed sample Control

1.0 ppm 4 h 82.2 5.1 ± 0.5e 28.3 ± 2.9a

2 h 82.3 5.6 ± 0.5de 31.6 ± 2.8b

1 h 90.9 2.6 ± 0.7d 28.6 ± 3.0a

30 min 97.2 0.8 ± 0.4c 28.6 ± 3.0ab

0.1 ppm 4 h 93.3 1.9 ± 0.2cd 28.3 ± 2.9a

2 h 92.7 2.3 ± 0.3d 31.6 ± 2.8b

1 h 94.4 1.6 ± 0.1c 28.6 ± 3.0a

30 min 93.3 1.9 ± 0.8cd 28.6 ± 3.0ab

0.05 ppm 4 h 90.1 2.8 ± 0.6d 28.3 ± 2.9a

2 h 78.3 4.0 ± 0.8cd 31.6 ± 2.8b

1 h 89.9 2.9 ± 0.5d 28.6 ± 3.0a

30 min 79.0 6.0 ± 1.4c 28.6 ± 3.0ab

Readings having no common superscript show significant variation 	
(p < 0.05) [130].

Figure 3.  Mode of action of silver nanoparticles against C. parvum oocyst. (Created by Biorender.) Description: Ag NPs bind 
to P and S site of DNA and Proteins (1) reduce the permeability of cell membrane (2), Enzyme degradation (3), which leads 
to cell death (4). On the other hand, Ag NPs reduce acetylcholinesterase activity (A) that leads to enzyme denaturation and 
ultimately cell death (B).
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lamblia parasites inactive [162]. The mode of action of 
CuNPs involves their interaction with sulfhydryl groups, 
which then leads to protein denaturation, which ultimately 
results in the death of pathogens [160]. CuNPs decrease 
the permeability of the cell membrane, production of 
ROS, disruption of DNA molecules, protein denaturation, 
and lipid peroxidation, and hence prove toxic for bacterial 
pathogens [163]. Drugs kill microbes by using the pro-
grammed cell death phenomenon, also known as apopto-
sis, and use different types of caspase enzymes for killing 
[164]. Exposure to CuNPs at different concentrations leads 
to the stimulation of cell death by activation of caspase-3 
activity in the protoscoleces of Echinococcus granulosus. 
CuNPs exposure for 48 h can inactivate the protoscol-
eces by inducing regulation of caspase enzymes of 20.5%, 
32.3%, and 36.1% at dose rates of 250, 500, and 750 mg/
ml, respectively [165]. 

The effectiveness of gold nanoparticle solutions as 
anti-infective agents is extensively elaborated. The utility 
of the improvement of novel antibacterial drugs is stated 
[166]. Furthermore, the expertise of its hobby in opposi-
tion to pathogenic protozoa is restricted. Thus, the writ-
ers conduct an initial examination to evaluate the impact 
of a gold nanoparticle solution on Cryptosporidium oocyst. 
The authors use this version to evaluate the impact of 
gold nanoparticles on cells, as in the previously posted 
papers. Briefly, the writer used the 30 fecal samples with 
Cryptosporidium oocyst for trial. Every fecal sample was 
divided into two parts by naive manipulation and combined 
with 1 cc of gold nanoparticles [167,168]. The authors 
evaluate the reduction in the number of Cryptosporidium 
oocysts in each group. At the start, the average number 
of Cryptosporidium oocysts per high-power field (HPF) 
is 8.8 ± 1.2 oocysts/HPF. The reduction of the implied 
Cryptosporidium oocyst quantity after checking may be 
discovered. The common change after manipulation in the 
naïve and gold nanoparticle solution combined groups is 
1.2 ± 0.5 oocysts/HPF and 4.7 ± 1.2 oocysts/HPF, respec-
tively. There is a huge distinction in the reduction of the 
number of oocysts between these two groups (P < 0.05; 
t-check). This preliminary report would possibly suggest 
that a gold nanoparticle solution has an impact on the inac-
tivation of Cryptosporidium oocyst. This will verify the idea 
that attaching gold nanoparticles to indinavir may enhance 
its in vitro efficiency against C. parvum [137].

Future perspective

Cryptosporidium is a parasite made up of protozoan cells 
that can seriously harm both humans and animals’ gas-
trointestinal systems. It is highly resistant to traditional 
water treatment methods and can survive in aquatic 
environments for extended periods, posing a significant 

public health threat [169]. Nanoparticles have demon-
strated their potential as a tool in the fight against 
Cryptosporidium because of their distinct chemical and 
physical characteristics. Nanoparticles are able to enter 
the parasite’s cell membrane, disrupting its integrity and 
inhibiting its growth and reproduction [170]. One poten-
tial future perspective for the use of nanoparticles against 
Cryptosporidium is the development of nanoparticle-based 
water filtration systems. These systems could be used 
to remove Cryptosporidium and other pathogens from 
drinking water, improving public health outcomes [171]. 
Another potential application of nanoparticles is in the 
process of evolving targeted drug delivery systems for the 
treatment of Cryptosporidium infections. By encapsulating 
drugs within nanoparticles, it may be possible to lessen 
potential side effects and increase medication effective-
ness, as well as increase drug stability and shelf life [172]. 
Overall, the use of nanoparticles against Cryptosporidium 
holds great promise for improving water quality and treat-
ing Cryptosporidium infections. However, further study is 
required to completely comprehend the safety and efficacy 
of these approaches and to develop practical and cost-ef-
fective solutions for their implementation [173].

Conclusion 

In the past few years, it has been observed that nanopar-
ticles, particularly CS-based and silver nanoparticles, are 
capable of delivering drugs to the target sites with more 
efficiency and have fewer side effects and toxicity. In this 
review based upon previous literature, it is revealed that 
various medicines embedded in CS and Ag NPs are highly 
efficient anticryptosporidial agents employed to control 
Cryptosporidium species due to an increase in their avail-
ability and longer duration of action at target sites. Ag NPs 
and CS NPs are effective alternatives to drugs and safer to 
use. Nanotechnologies help us find effective disinfectants 
that are safe to use and also less costly for the purification 
of water by killing C. parvum and various other parasites 
and bacteria. However, nanoparticles are costly, and more 
research is required to find their practical uses in clinics 
and to find out the dose rate and safe concentrations of 
CS NPs and Ag NPs for a specific duration of time to fight 
against this parasite. 

List of abbreviations

C. Cryptosporidium; FDA, Food and Drug Authority; PLGA, 
Poly Lactic-co-Glycolic Acid; Au, Gold; Ag, Silver; Zn, 
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Ag NPs, Silver Nanoparticles; CL, Cutaneous Leishmaniasis; 
ppm, Parts per million; CuNPs, Copper nanoparticles; IC50, 
Inhibitory Concentration; Au Nps, Gold Nanoparticle; HPF, 
High Power Field; SEM, Scanning Electron Microscope; 
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