
http://bdvets.org/javar/	 	 654Amin et al. / J. Adv. Vet. Anim. Res., 10(4): 654–666, December 2023

JOURNAL	OF	ADVANCED	VETERINARY	AND	ANIMAL	RESEARCH
ISSN	2311-7710	(Electronic)
http://doi.org/10.5455/javar.2023.j721	 December 2023
A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET) VOL	10,	NO.	4,	PAGES	654–666

ORIGINAL	ARTICLE

Abortion associated with postpartum opportunistic bacterial invasion reduces fertility 
and induces disturbances of reproductive hormones, hematological profile, and 
oxidant/antioxidant profiles in dairy cows
Yahia	A.	Amin1 ,	Gamal	A.	M.	Omran2,	Samer	S.	Fouad3 ,	Mariam	A.	Fawy4 ,	Rawia	M.	Ibrahim5 ,		
Fatma	Ahmed	Khalifa6 ,	Rana	A.	Ali4 	
1Department	of	Theriogenology,	Faculty	of	Veterinary	Medicine,	Aswan	University,	Aswan,	Egypt
2Department	of	Microbiology,	Animal	Health	Research	Institute	(AHRI),	Agriculture	Research	Center	(ARC),	Sohag	branch,	Egypt
3PHD	of	Clinical	Pathology	of	Veterinary	Medicine,	Qena	University	Hospital,	South	Valley	University,	Qena,	Egypt
4Department	of	Zoology,	Faculty	of	Science,	South	Valley	University,	Qena,	Egypt
5Clinical	Laboratory	Diagnosis,	Department	of	Animal	Medicine,	Faculty	of	Veterinary	Medicine,	South	Valley	University,	Qena,	Egypt
6Division	of	Infectious	Diseases,	Animal	Medicine	Department,	Faculty	of	Veterinary	Medicine,	South	Valley	University,	Qena,	Egypt

Correspondence Yahia	 A.	 Amin	 	 yahiaamin2030@gmail.com	 	Department	 of	 Theriogenology,	 Faculty	 of	 Veterinary	Medicine,	 Aswan	University,	
Aswan,	Egypt.

How to cite this article: Amin	YA,	Omran	GAM,	Fouad	SS,	Fawy	MA,	Ibrahim	RM,	Khalifa	FA,	Ali	RA.	Abortion	associated	with	postpartum	opportunistic	bacterial	
invasion	reduces	fertility	and	induces	disturbances	of	reproductive	hormones,	hematological	profile,	and	oxidant/antioxidant	profiles	in	dairy	cows.	J	Adv	Vet	Anim	Res	
2023;	10(4):654–666.

ABSTRACT

Objective:	The	following	study	examines	for	the	first	time	the	changes	that	occur	in	the	post-par-
tum	period	following	abortion	in	the	first	trimester	of	dairy	cows	using	hormonal,	hematological,	
and	oxidant/antioxidant	profiles.	In	addition,	a	bacteriological	examination	was	also	performed	to	
explore	the	role	of	infections	in	the	complications	that	occur	during	this	period.
Materials and Methods:	One	hundred	cows	were	 split	 into	 two	equal	 groups:	The	first	 group	
enrolled	cows	that	suffered	from	abortion	in	the	first	trimester.	The	second	group	enrolled	cows	
that did	 not	 experience	 abortion	 problems	 (the	 control	 group).	Uterine	 swabs	were	 collected	
from	cows.	Blood	samples	were	collected	for	hormonal,	hematological,	and	oxidative	profiles.
Results:	Results	reveal	that	Escherichia coli,	Staphylococcus spp.,	and	Streptococcus spp.	are	the	
opportunistic	 bacteria	 that	 were	 isolated	 from	 abortive	 cows	 with	 multidrug-resistant	 (MDR)	
characteristics.	Red	blood	cell	 (RBC)	count,	hemoglobin,	mean	corpuscular	hemoglobin	(MCH),	
and	MCH	concentration	(MCHC)	were	significantly	higher	in	the	abortive	group	than	in	controls	
in	 the	 first	 3	 days	 after	 calving.	 Conversely,	 total	 leukocyte	 count,	 platelet	 count,	 neutrophils,	
eosinophils,	and	 immunoglobulin	G	and	M	were	significantly	 lower	 in	the	abortion	group	than	
in	controls.	The	concentrations	of	estradiol,	prostaglandin	F2α,	oxytocin,	and	cortisol	are	signifi-
cantly	 increased	 in	the	abortive	cows,	while	progesterone	 is	significantly	decreased.	The	 levels	
of	malondialdehyde	(MDA)	were	higher	in	the	abortive	group,	while	the	levels	of	superoxide	dis-
mutase	(SOD),	glutathione	peroxidase	(GPx),	and	total	antioxidant	capacity	(TAC)	were	lower.
Conclusion:	 Abortion	during	 the	first	 trimester	of	 pregnancy	 increases	 the	 risk	of	 postpartum	
opportunistic	bacterial	invasion	of	the	uterus.	Oxidative	stress	(OS)	and	neutropenia	are	the	most	
important	findings	that	may	occur	in	the	postpartum	period	after	abortion	and	may	be	due	to	the	
abortion	itself	or	its	predisposition	to	opportunistic	bacterial	invasion	of	the	uterus,	which	finally	
causes	a	fertility	reduction.
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Introduction

Bovine abortion causes a considerable economic loss to 
dairy farms. It is a complex reproductive condition that 
occurs between 42 and 280 days of pregnancy and is 

considered one of the most important components of the 
reduced reproductive performance of high-milking cows 
[1,2]. It is estimated that each abortion case costs roughly 
$640.00 in productivity losses [3]. This cost of loss was 
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estimated depending on several factors, such as the time of 
incidence of abortion during pregnancy, the differences in 
the performance of predicted cows, the prices of breeding, 
and replacement decisions. Hanson et al. [4] illustrated 
that in California herds, the losses were $200 million per 
year. Recent studies in Algeria indicated that the ratio of 
abortions in cattle and sheep herds reached 40.29% and 
79.41%, respectively [5]. In Mexico, the percentage of cows 
aborting was 17.7% [6], while in Ethiopia, the overall inci-
dence rate was recorded at 14.30% [7].

Abortions may originate from an infectious agent that 
can be sporadic or pandemic in nature and is brought on 
by a variety of pathogens [8–11], such as bacterial, viral, 
fungal, protozoal, and non-infectious agents [12]. High 
milk production is one of the non-infectious reasons for 
abortion [2,13]. In addition, heat stress [1,14], parity [15], 
previous post-partum disorders [16], and twin pregnan-
cies [2,17] are also non-infectious agents that are respon-
sible for the induction of abortion. Other factors could also 
induce its incidence or heighten its influence. Age, genet-
ics, or health status represent the most common intrinsic 
factors, while livestock management, feeding, or stress are 
the extrinsic ones [9,18].

In cows, some bacterial agents have the ability to 
cause abortion, such as those that cause diseases such as 
brucellosis, leptospirosis, listeriosis, and Q fever [19,20]. 
Sporadic abortions may occur due to infectious organ-
isms such as fungi, Ureaplasma diversum, Campylobacter 
fetus, and Listeria monocytogenes [21,22]. While repeated 
abortion has been reported to be caused by viral diseases 
including BHV-1 and Schmallenberg virus and coccidian 
parasites such as Neospora caninum in cows [23,24], other 
bacterial agents, such as Leptospira spp., Salmonella spp., 
L. monocytogenes, and Campylobacter spp., are sporadic 
causes of bovine abortion and can also transmit harmful 
zoonotic illnesses [22]. Moreover, many cases of abortion 
are caused by opportunistic bacterial pathogens, which 
predominantly remain undetected. These pathogens usu-
ally inhibit the host and environment as common inhab-
itant and sometimes invade the blood stream of the dam 
till it reaches the placenta, causing sporadic abortion [25].

Increasing understanding of the bacteria responsible 
for cattle abortion is essential for improving the diagnostic 
process and identifying new infections [26]. Several fac-
tors play a role in the spread of existing pathogens, such 
as trade globalization, increases in herd size, and environ-
mental change. These factors introduce the disease into 
regions and animal populations that did not exhibit infec-
tion before [27]. The increased microbial load in farms 
with a large number of heads may help to explain the 
correlation between abortion and herd size by exposing 
pregnant females to more bacteria that cause abortions. 
Additionally, it is more difficult to conduct cleaning and 

disinfection methods on vast farms, which compromises 
basic hygiene practices [5]. Other risk variables, such as 
parity, calving month, pregnancy and lactation stage, mas-
titis, and prior abortion, have been described for bovine 
abortion and fetal loss [1,2,28].

Oxidative stress (OS) has been linked to pregnancy 
issues like spontaneous abortion and recurrent pregnancy 
loss (RPL) [29]. This link originates from the fact that 
phagocytic cells, which are the primary generators of reac-
tive oxygen species (ROS) and reactive nitrogen species 
(RNS), are recruited and activated by pro-inflammatory 
and chemotactic cytokines [30]. The mechanisms of ovar-
ian disruption due to uterine infection and/or biochem-
ical profiles are several and diverse [31]. Nonetheless, 
the endotoxin lipopolysaccharide (LPS) was strongly evi-
denced as a key disruptor of ovarian function, as it was 
determined in the follicular fluid of cases of diseased cattle 
suffering from uterine infection [32]. Therefore, it was con-
cluded that LPS is directly correlated with bacterial infec-
tion and its load [33].

In spite of the fact that many recent studies have been 
focusing on early embryonic loss, which was recorded 
with increased incidence [34–36], more research into 
fetal loss is required because so little is known about the 
mechanisms that take place in body systems after the inci-
dence of abortion. The risk of abortion is not limited to the 
loss of the newborn and the loss of a new season of milk 
yield; it may extend to influencing the post-partum period 
and reproductive fertility, particularly if associated with 
infection.

As a result, the current study hypothesized that cows 
that had abortions are more likely to have infertility in the 
future due to hormonal insufficiency and OS, especially if 
the aborted uterus is exposed to invasion by an opportun-
ist bacterial infection after calving. To enhance that under-
standing, one must comprehend the modifications that 
take place in the body’s systems following an abortion. 
Therefore, the aim of the current study did not concern the 
cause of abortion. Otherwise, the objectives of this study 
were to investigate the changes that take place in body 
systems after the incidence of abortion after the first tri-
mester of gestation, its predisposition for opportunist bac-
terial invasion in the uterus after calving, and its effect on 
the subsequent fertility of the dairy cows by investigating 
hormonal, hematological, and oxidative profiles.

Materials and Methods

The current study’s procedures were carried out in confor-
mity with the guidelines of the Ethics Research Committee of 
the Faculty of Veterinary Medicine, South Valley University, 
Egypt (approval No. 74/01.10.2022). The study was per-
formed on a private farm that contains Frisian dairy cows 
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in Qena province, in the south of Egypt. The herd on the 
farm is composed of 600 cows. The average body condition 
scores (BCs) of the cows were 3.2 ± 0.12 (scale: 1 = thin, 
5 = fat), and they appeared to be in good health (average 
age, 5–6 years; weight, 350–400 kg) [37]. The herd uses a 
two-time daily milking schedule (at 6 a.m. and 6 p.m.) with 
a milking machine. The average milk production per day is 
25 ± 0.5 kg of milk, with lactation duration ranging from 
270 to 305 days. A total mixed ration (TMR) is used to feed 
animals, and it is provided three times per day. The TMR 
used in this study was prepared according to the national 
research council (NRC) [38]. Mothers and calves were kept 
separated. Breeding depends on natural mating.

The investigation involved two groups of dairy cows. The 
first group was composed of 50 cows that had experienced 
an early abortion (first trimester of gestation). The second 
group was composed of the same number of cows as the first 
group, but the cows did not experience abortion problems 
(control group). Cows were diagnosed as pregnant by tran-
srectal palpation and ultrasonography on days 50 post-serv-
ing. Confirmatory pregnancy diagnosis occurs on day 90 
post-serving using the same methods of pregnancy diagno-
sis. Pregnancy losses were considered when the cows that 
were previously diagnosed as pregnant on day 50 became 
unpregnant on the pregnancy confirmatory day and were 
considered to have been clinically aborted. Descriptive epi-
demiology was the method used in the analysis. Pregnancy 
loss rates were detected monthly in all animals.

Sampling for bacteriological isolation 

Swabs from the uterus were obtained for a bacteriolog-
ical examination from all cows (aborted group and con-
trol group) in the immediate post-partum period (3 ± 1 
day after calving) and every two weeks for two months 
after parturition. A transcervical-guarded swab from the 
uterine body of each animal was taken using a previously 
validated method [39,40]. Briefly, the swab was formed 
from a long copper wire with a cotton wool tip, wrapped 
in a metal guard tube with a 58 cm length and an 8 mm 
external diameter. The swab was autoclaved to sanitize it. 
To prevent contamination of the swab upon insertion, the 
guard tube’s distal end was protected by a sterile gelatin 
half-capsule (Devacaps). Each cow’s vulva was cleaned, 
and using the rectum as a guide, a swab was pushed via 
the vagina and cervical canal into the uterine lumen. 
The swab was introduced into the uterine body through 
the guard tube, dislodging the gelatin capsule and com-
ing into firm contact with the endometrium 2 cm from 
the bifurcation of the horns. It was then retracted into 
the guard and removed from the uterus [33]. The swabs 
were transported at 4°C in the icebox using a transport 
medium made of thioglycollate broth and then processed 
for bacteriological analysis. It was cultured an hour after 

being collected. Samples were cultured on nutrient broth, 
nutrient media, Macconkey media, blood agar, Mannitol 
media, and EMB agar (Lab M Limited, Topley House, 52 
Wash Lane, Bury, Lancashire, BL9 6AS, United Kingdom). 
After a 24-hour period of bacterial culture, the bacteria 
were identified. Colony characteristics, hemolysis, gram 
stain, morphology, catalysis, indole synthesis, methyl red, 
Voges-Proskauer, and citrate production tests were used 
for identification [40]. For the detection of the resistance 
of these bacterial agents, in-vitro antibiotic sensitivity test-
ing was performed on all isolates [41]. Isolates with more 
than three antimicrobial resistances or intermediate sus-
ceptibilities were known as multidrug-resistant (MDR) 
isolates [42]. According to clinical and laboratory stan-
dards institute (CLSI) (formerly national committee for 
clinical laboratory standards (NCCLS)) guidelines, the disc 
diffusion method was used to test antibiotic sensitivity in 
Mueller-Hinton agar. In order to accomplish this, a sepa-
rate disc containing Amikacin, Amoxicillin, clavulanic acid, 
Cefepime, Cefoperazone, Ampicillin/sulbactam, Cefadroxil, 
Doxycycline, Ciprofloxacin, Rifampicin, Gentamycin, 
Spiramycin, Nalidixic Acid, and Penicillin was employed.

Breeding soundness examination

All cows (aborted cows and control ones) were subjected 
to breeding soundness examination after delivery with the 
administration of PGF2α injection (2 ml of estrumate, 500 
mcg cloprostenol, per cow through intramuscular injec-
tion). Duration to 1st estrus (d); days open (DO) (d) (the 
end of the voluntary waiting period, which was consid-
ered 50 days to successful insemination); and the number 
of services per conception were the breeding parameters 
that were investigated.

Sampling for hormonal, hematological, and OS testing

Blood samples (20 ml) were collected from the animals’ 
jugular veins [43] from all cows one day after parturition, 
three days after parturition, and 15 days after parturition. 
Blood was collected into two different types of vacutainer 
collecting tubes: one type was coated with ethylene 
diamine tetraacetic acid (EDTA) as an anticoagulant for 
evaluating the hematological parameters, and the other 
type was plain vacutainer tubes for separating serum to 
measure hormonal and oxidant/antioxidant parameters. 
Separate serum samples were kept at -20°C pending fur-
ther examination.

Hematological analysis 

Using an automated hematology analyzer (Scil Vet ABC 
Hematology Analyzer, Scil Animal Care Company, USA), 
the following parameters for the hematological analysis 
were determined: Red blood cell count (RBC), packed cell 
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volume (PCV), hemoglobin concentration (Hb), platelet 
count, mean corpuscular volume (MCV), mean corpuscu-
lar hemoglobin (MCH), MCH concentration (MCHC), and 
white blood cell count (WBC). Blood smears stained with 
Giemsa stain were used to manually calculate the differen-
tial leukocyte count, including the percentages of neutro-
phils, lymphocytes, monocytes, basophils, and eosinophils. 
The serum immunoglobulin (Ig) G and M levels were mea-
sured as previously described [44].

Hormonal detection

Progesterone (P4) and estradiol (E2) concentrations 
were determined using an ELISA Kit (Diaplus, North 
York, Ontario, Canada) as described by Heidari et al. 
[45]. Oxytocin (OT) was examined using the OT ELISA Kit 
(Catalog No. E-EL-0029) product of Elabscience® (USA). 
Prostaglandin F2 alpha (PGF2α) was analyzed using the 
Human PGF2α (Prostaglandin) ELISA Kit (Catalog No: 
E-EL-H1841) in accordance with the manufacturer’s 
instructions (Elabscience®, USA). Cortisol was detected 
by commercially available enzyme-linked immunosorbent 
reagent kits (Diagnostic Biochem Canada, Canada).

Oxidant and antioxidant detection

The Spectro Ultraviolet spectrophotometer (Labomed, Inc., 
Los Angeles, CA, USA) was used to determine the serum 
concentration of malondialdehyde (MDA) colorimetrically 
as an indicator of lipid peroxidation (Biodiagnostic com-
mercial assay kits, Cairo, Egypt). The same device was 
used for the detection of the plasma levels of superoxide 
dismutase (SOD), glutathione peroxidase (GPx), and total 
antioxidant capacity (TAC) as antioxidant biomarkers (bio-
diagnostic commercial assay kits).

Statistical analysis

The data are described as means ± SE. Data analysis was 
performed using SPSS Statistics 19 software (IBM, USA) 
using the analysis of variance technique (ANOVA). A gen-
eral linear model ANOVA with repeated measures was 
used to evaluate significant differences. As the variation 
of time and its effect on the results were not significant (p 
> 0.10), time trends were excluded from the final model. 
Dependent variables were concentrations of reproductive 
hormones, hematological parameters, and oxidant and 
antioxidant levels between the abortion and control cows. 
Differences were considered significant at p ≤ 0.05.

Results

Bacterial isolation and sensitivity test

Bacteriological examination indicates that abortive 
cows suffer from different types of bacterial infections 

(Escherichia coli, Staphylococcus spp., and Streptococcus 
spp.) compared to control cows that exhibit no bacterial 
growth. The isolated bacteria are either single, such as E. 
coli (24%, n = 12 cows), or mixed with each other, such as 
E. coli and Staphylococcus spp. (50%, n = 25 cows), or E. coli 
and Streptococcus spp. (26%, n = 13 cows). The antibiotic 
sensitivity test indicates that all types of isolated bacteria 
are MDR bacteria (Fig. 1).

The adverse effect of abortion on the fertility profile

The duration of the first estrus, the DO, and the number of 
services per conception exhibit a significant increase in the 
group of cows having abortions compared to the control 
group (Table 1).

Hematological analysis 

The hematological parameters of cows suffering from abor-
tion compared to control cows are presented in Table 2. 
Abortive cows demonstrated a statistically significant (p < 
0.05) drop in RBC, hemoglobin, MCH, and MCHC on day 15 
postpartum compared to the other healthy cows; in addi-
tion, the PCV was decreased, but the decrease was not sig-
nificant. The values of mean cell volume (MCV) increased 
on the 15th postpartum day of abortive cows, but the 
increase was not significant. The values of the total leu-
kocytic cell count, the platelet count, and the percentages 
of neutrophils and eosinophils on day 15 postpartum in 
the abortive cows were significantly decreased compared 
to their values in control cows. In contrast, lymphocytes 
in the abortive cows were significantly increased com-
pared to the control cows, while monocytes and basophils 
showed no difference between the two groups. Checking 
of IgM and IgG reveals that there is a significant decrease 
in their values in abortive cows compared to control ones.

Hormonal detection

Examination of the hormonal profile indicates that the 
concentrations of E2, PGF2α, OT, and cortisol are signifi-
cantly increased in the aborting cows compared to the con-
trol group. In contrast, P4 is significantly decreased in the 
aborting cows compared to the control group (Table 3).

Oxidant and antioxidant detection

The levels of MDA in the abortion group have significantly 
increased as compared to the healthy group at all the time 
points in the study. Biomarkers of the antioxidant profile, 
including SOD, GPX, and TAC levels, in the abortive group 
were significantly lower than those in the control animals 
at all time points of the study (Table 4).
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Discussion

Cow abortions continue to be a serious problem for dairy 
farms, where there could be large financial losses. The 
current study is concerned with the detection of abortion 
in the first trimester of gestation. According to a previous 
study conducted in Mexico, cow pregnancies were lost the 
most often between days 45 and 90 of gestation [46]. Some 
reports showed that most abortion cases occur in the sec-
ond trimester of pregnancy [47], while others showed that 
they occur mostly in the third trimester [48,49], with the 
second trimester reported to be of the highest risk [4,50]. 
These differences in the timing of abortion might be due to 
the difficult diagnosis of abortion during the first trimes-
ter of gestation, and some causes of abortion in cattle were 
gestation stage-specific [51].

The diagnosis of bovine abortion is challenging, and 
despite thorough laboratory testing, the variety of causes 
cannot be recognized [9,52]. The intricacy of the etiology of 

bovine abortion has led to its classification as a syndrome 
[53]. The frequent autolysis of the fetus and placenta 
prevents the successful detection of infectious agents by 
preventing the observation of lesions. Another challenge 
in diagnosing bovine abortion, particularly in epidemic 
outbreaks, may come from the transmission of many 
abortigenic agents within a single herd [54]. In addition, 
nonpathogenic or opportunistic bacteria are frequently 
present in bacterial cultures from fetal tissues and placen-
tas [9], which makes it challenging to interpret the results, 
particularly in situations where there are no lesions indic-
ative of bacterial infection.

In the current study, the opportunistic bacteria isolated 
from the abortive cases of cows were E. coli, Streptococcus 
spp., and Staphylococcus spp. These findings are in line with 
those shown by Macas-Rioseco et al. [47], who reported 
that among cases that had an etiologic diagnosis, 94.4% 
were caused by infectious agents, and 21.5% of these 
cases were associated with opportunistic bacteria. The 

Figure 1. Antibacterial sensitivity test of E. coli and mixed bacterial isolates recovered from uterine 
discharge samples against different antibacterial agents.

Table 1. Adverse	effects	of	abortion	on	the	fertility	profile	of	dairy	cows.

Item Abortive cows (n = 50) Control cows (n = 50)

Duration	to	1st	estrus 95.36	±	1.16* 36.29	±	1.06

Days	open	 125.31	±	2.11* 66.15	±	1.32

Number	of	services	per	conception	(n) 2.15	±	0.26* 1.20	±	0.18

Values	are	expressed	as	Mean	±	SE.	Asterisks	(*)	indicate	statistically	significant	(p	<	0.05)
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authors also indicated that the most common opportunis-
tic pathogens were Escherichia coli, Streptococcus spp., and 
Staphylococcus spp.

As sporadic abortifacients in cattle, bacteria like E. coli, 
Streptococcus spp., Staphylococcus spp., and Mannheimia 
spp. have also been identified in prior reports and linked to 

suppurative lesions in the placenta, lungs, and occasionally 
other fetal tissues [9,53].

It’s interesting to note that new research has ques-
tioned the extent to which E. coli is linked to uterine dis-
ease. A recent study indicated that E. coli was found to be 
responsible for causing postpartum uterine disease such 

Table 2. The	hematological	parameters	of	cows	with	history	of	abortion	compared	to	control	cows.

Items
Abortive cows (n = 50) Control cows (n = 50)

1–3 days after calving 15 days postpartum 1–3 days after calving 15 days postpartum

RBCs	(×106/μl) 6.5	±	0.12	a 5.5	±	0.11	b 5.7	±	0.14	c 5.72	±	0.18	c

Hemoglobin	(g/dl) 16	±	0.11	a 11	±	0.12	b 13	±	0.13	c 13.15	±	0.11	c

PCV	% 44	±	0.12	a 34	±	0.17	b 35	±	0.18	b 35.6	±	0.17	b

MCV	(fl) 68	±	0.13	a 62	±	0.14	b 61	±	0.11	b 61.5	±	0.12	b

MCH	(pg) 25	±	0.18	a 20	±	0.19	b 23	±	0.14	a 24.02	±	0.12	a

MCHC	(gl) 364	±	0.11	a 324	±	0.14	b 371	±	0.17	a 372	±	0.17	a

Total	leukocyte	count	(×103/μl) 10.60	±	0.12	a 6.85	±	0.11	b 11	±	0.15	a 11.22	±	0.13	a

Neutrophils	% 26	±	0.17	a 20	±	0.19	b 52	±	0.18	c 51	±	0.17	c

Eosinophil	% 02	±	0.11	a 02	±	0.13	a 06	±	0.14	b 06	±	0.14	b

Basophil	% 00 00 00 00

Lymphocytes	% 70	±	0.16	a 78	±	0.19	a 42	±	0.17	b 43.02	±	0.15	b

Monocyte	% 02	±	0.11 00 00 00

Platelets	count	(×103/μl) 210	±	0.16	a 170	±	0.14	b 220	±	0.18	a 221	±	0.17	a

IgM	(mg/dl) 6.5	±	0.13	a 3.0	±	0.11	b 5.0	±	0.12	c 5.12	±	0.10	c

IgG	(mg/dl) 16	±	0.15	a 13	±	0.16	b 30	±	0.14	c 32.01	±	0.16	c

Values	are	expressed	as	Mean	±	SE.	Means	bearing	different	superscripts	in	the	same	row	differ	significantly	(p	<	0.05).

Table 3. The	hormonal	profile	of	cows	with	history	of	abortion	compared	to	control	cows.

Items
Abortive group (n = 50) Control group (n = 50)

1–3 days after calving 15 days postpartum 1–3 days after calving 15 days postpartum

Progesterone	(ng/ml) 0.8	±	0.15	a 0.17	±	0.14	b 0.95	±	0.16	a 2.66	±	0.16	c

Estradiol	(pg/ml) 16.15	±	0.15	a 14.15	±	0.15	a 9.28	±	0.18	b 5.28	±	0.18	b

Oxytocin	(pg/ml) 10.74	±	0.11a 8.74	±	0.11	a 4.55	±	0.12	b 2.57	±	0.13	b

Prostaglandin	F2	α	(ng/ml) 7.4	±	0.13	a 6.4	±	0.12	a 1.3	±	0.14	b 0.3	±	0.14	b

Cortisol	(ng/ml) 2.51	±	0.14	a 2.14	±	0.14	a 1.50	±	0.16	b 0.89	±	0.16	b

Values	are	expressed	as	Mean	±	SE.	Means	bearing	different	superscripts	in	the	same	row	differ	significantly	(P	<	0.05).

Table 4. Mean	activity	of	the	oxidant/antioxidant	profile	of	cows	with	history	of	abortion	compared	to	control	cows.

Items
Abortive group (n = 50) Control group (n = 50)

1–3 days after calving 15 days postpartum 1–3 days 
after calving 15 days postpartum

Malondialdehyde	(MDA)	(nmol) 4.5	±	0.02	a 4.0	±	0.02	a 3.5	±	0.05	b 3.4	±	0.05	b

Superoxide	dismutase	(SOD)	(U/ml) 2.2	±	0.03	a 2.1	±	0.03	a 3.2	±	0.01	b 3.1	±	0.01	b

Glutathione	peroxidase	(GPX)	(U/ml) 815	±	0.06	a 820	±	0.06	a 1005	±	0.02	b 1000	±	0.02	b

Total	antioxidant	capacity	(TAC)(mmol/ml) 0.9	±	0.12	a 1.0	±	0.12	a 1.5	±	0.11	b 1.7	±	0.12	b

Values	are	expressed	as	Mean	±	SE.	Means	bearing	different	superscripts	in	the	same	row	differ	significantly	(P	<	0.05).
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as postpartum endometritis in dairy cattle, and sometimes 
its presence was associated with other types of bacterial 
agents such as Staphylococcus spp., Streptococcus spp., and 
Klebsiella spp. [55]. However, some studies have found a 
tenuous link between uterine illness or infertility and the 
presence of E. coli at 35 days in milk (DIM) [56,57]. It is 
essential to distinguish between the presence of E. coli in 
the uterus at 35 DIM and the importance of E. coli in the 
uterus shortly after parturition, where accompanying 
uterine disease and infertility exist [58,59]. Furthermore, 
in the current study, it is not confirmed whether the oppor-
tunistic bacteria isolated from the abortive cases were 
the cause of abortion in the first trimester of gestation 
or whether the opportunistic bacteria invaded the uterus 
during or after abortion.

Losing a pregnancy has a significant detrimental influ-
ence on reproductive effectiveness and, consequently, 
on-farm profitability [60]. According to Wijma et al. [61], 
cows that have abortions have a higher risk of having 
another one if they conceive again, a reduced risk of preg-
nancy by 400 DIM, and a greater risk of culling from the 
herd than non-aborted cows. Abortions can also result 
in additional health issues such as retained placenta, 
metritis, endometritis, and pyometra, which can have an 
adverse effect on fertility, milk production, and productive 
life [62,63]. In the current study, compared to the control 
group, aborted cows had a significantly longer time to the 
first estrus, more open days, and more services needed for 
each conception. These results are consistent with those of 
earlier research that illustrated that the inflammatory con-
dition causes an increase in days to first service, decreased 
pregnancy/AI, and increased DO [33,64]. In the study per-
formed by Albuja et al. [46], the effects of abortion indi-
ces on three reproductive parameters, including calving 
interval (CI), DO, and dry days (DD), were determined. The 
findings of the later study revealed a positive correlation 
between the frequency of simulated abortions and the 
lengthening of the average days for all three parameters.

The increased duration of the first estrus after abortion 
may be related to ovarian inactivity and/or anovulation. 
Retardation of ovulation and sometimes anovulation in 
cows result from uterine infections resulting from several 
causes, such as slower growth of the postpartum domi-
nant follicle in the ovary, lower peripheral plasma estra-
diol concentrations, and perturbation of hypothalamic and 
pituitary function [65]. Ovulatory postpartum follicles are 
characterized by reduced synthesis of androstenedione 
and estradiol [66,67]. Prolonged postpartum anovulation, 
which is considered the main cause of infertility, usually 
results from the combination of the incidence of uterine 
disease and the presence of smaller, slower-growing fol-
licles on the ovary, which exhibit reduced steroidogen-
esis [68]. The mechanisms of ovarian disruption due to 

uterine infection and/or biochemical profiles are several 
and diverse [31]. Nonetheless, the endotoxin LPS was 
strongly evidenced as a key disruptor of ovarian func-
tion, as it was determined in the follicular fluid of cases 
of diseased cattle suffering from uterine infection [32]. 
Therefore, it was concluded that LPS is directly correlated 
with bacterial infection and its load [33,69].

Till now, there have been no studies concerned with the 
variations that occur in the postpartum period of abortive 
cases of dairy cattle in the first trimester of gestation. The 
current study is the first to evaluate the hematological dif-
ferences in abortive cases of cows in the first trimester of 
gestation that are associated with opportunistic bacterial 
infections. Due to this shortage of data about this topic, the 
authors of the current study compared the current findings 
with those mentioned in the previous studies concerned 
with abortion due to Leptospira, which can cause abortion 
at any stage of gestation.

RBC, Hb, and MCV values in the current study’s abortive 
cows were much lower than those in control cows, which 
was statistically significant. These outcomes resemble 
those that have been noted in cows with Leptospira sero-
positivity [70] and in goats [71]. Moreover, similar results 
were found by Ata et al. [72], who showed that the RBC 
counts and hemoglobin were significantly lower in two 
groups of women that suffer from early pregnancy loss 
and a threatened abortion, respectively, compared to the 
healthy control group.

In the current findings, the values of MCH, MCHC, total 
leukocytic count, platelet count, neutrophil count, and 
eosinophil count were significantly decreased compared 
to their values in control cows. In contrast, the percent-
ages of lymphocytes were significantly higher compared to 
their values in the controls. These results are almost iden-
tical to those found in the cases of cows having an abortion 
due to leptospira infection [70].

The association of abortion in the first trimester with 
the invasion of opportunistic bacteria indicates that these 
animals suffer from immunosuppression. This point of 
view is confirmed by Dirandeh et al. [73], who reported 
that cows that were pregnant and lost their embryos had 
reduced ISG15 expression (Type I interferons play a role in 
defense mechanisms to protect the host), the expression of 
inflammatory genes, such as interleukin-1, is elevated, and 
eicosanoids (polyunsaturated fatty acids play important 
roles in endocrine systems) associated with inflammatory 
prostaglandin responses are expressed differently. The 
key innate immune cells that help the body recover from 
bacterial infections are neutrophils [74]. The decrease of 
neutrophils in abortive cows is particularly severe, claim-
ing that neutropenia is compatible with a true pathogenic 
illness. The low percentage of neutrophils in the current 
study may explain the invasion of opportunistic bacteria 
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in abortive cows. Therefore, among the significant dis-
coveries found in this investigation is the association 
between abortion and neutropenia. Severe neutropenia is 
either primarily due to reduced myelopoiesis or second-
ary to severe inflammation related to consumption due 
to increased peripheral demand [75,76]. This latter state 
may be caused by a serious systemic inflammatory reac-
tion, typically of bacterial origin (such as septicemia), and 
the recruitment of neutrophils in organs with focal inflam-
matory alterations, which results in macroscopic evidence 
of the neutrophils aggregating in inflamed locations (e.g., 
purulent inflammation, abscesses, etc.). Therefore, the iso-
lation of the opportunistic bacteria from abortive cows is 
favorable to the presence of a moderate or severe systemic 
inflammatory response.

It is acknowledged that lymphocytes continue to pre-
dominate in mature cattle, with a neutrophil-to-lympho-
cyte ratio of roughly 1:2. This ratio (also known as the 
stress leukogram) might change for a number of reasons. 
Infections caused by bacteria, viruses, protozoa, parasites, 
and fungi have all been linked to inflammatory granulo-
cytosis [77]. Dairy cows with increased lymphocytes and 
reduced neutrophils after an abortion due to opportunistic 
bacteria in a ratio exceeding 1:2 (1:3.9) may explain the 
invasion of opportunistic bacteria to cause abortion and 
increase the risk of animal immunosuppression before 
parturition and during the early postpartum.

In the current findings, the values of platelet counts were 
significantly decreased. These results could be explained 
by an increase in platelet consumption for their destruc-
tion during the chronic inflammatory process brought on 
by the bacterial infection [78]. However, as none of the ear-
lier studies looked into these variables, it is impossible to 
make meaningful inferences.

A precise immunologic exchange at the endometri-
al-maternal-fetal immunological interface is necessary 
for a successful pregnancy. These maternal-fetal immune 
interfaces are extremely elaborate during early gesta-
tion and comprise a great deal of immunocytes, involv-
ing innate lymphocytes (ILC), macrophages, decidual 
dendritic cells (DCs), and T cells. A balance between the 
inflammatory response and immunological tolerance is 
established in large part by these cells [79]. Checking of 
IgM and IgG in the current study reveals that there is a sig-
nificant decrease in their values in abortive cows at day 15 
postpartum compared to control ones. Previous research 
suggests that diseases affecting the endometrial immuno-
logical microenvironment are linked to serious, life-threat-
ening reproductive abnormalities, including recurrent 
spontaneous abortion (RSA) and implantation failure 
(RIF) with an unknown cause [80].

The contraction of the cow’s myometrium is directly 
and indirectly influenced by P4, E2, OT, and PG [81]. 

Ovarian E2 and P4 both influence the pituitary’s secretion 
of OT [82]. The regulation of OT receptors in the myome-
trium can trigger strong utero-muscular contractions by 
increasing estrogen levels and triggering PGF2α release 
[83,84]. Prostaglandins cause myometrial contractions 
associated with the lysis of the corpus luteum, which 
secretes relaxin and reduces P4 concentrations [84]. Any 
hormone imbalance in cows can lead to cow/calf losses 
and reduced reproductive health, which can have negative 
direct and indirect consequences on productivity. In the 
current study, high levels of PGF2, E2, cortisol, and OT are 
likely to rise in aborting cows at all-time points while P4 
falls.

PGF2α is an uterotonic mediator responsible for 
increasing contraction of the uterus; therefore, it is used 
for induction of labor and estrus synchronization and has 
a positive feedback mechanism with the production of 
luteinizing hormone [18]. The prevalence of cow abortions 
has been linked to the increase in prostaglandin [85]. The 
mean prostaglandin concentrations in the current find-
ings in abortion cases are significantly higher than those 
of healthy cows. These results are almost similar to those 
mentioned in the study that investigated protozoal inva-
sion of the placenta and heart. This study found that the 
prostaglandins generated due to the invasion of the pla-
centa and heart by protozoa can result in cow abortion 
[86]. Other investigations have demonstrated the detri-
mental consequences of high PGF2α concentrations on 
the survival of the embryo, including embryo deaths, mal-
formations, and stillbirths [87,88]. Additionally, luteolysis 
brought on by prostaglandin-induced alterations in luteal 
circulation is typically followed by decreased P4 synthesis, 
which results in abortion [88].

The P4 hormone is in charge of preparing the uterus for 
pregnancy and sustaining it [89]. Consequently, there is a 
considerable change in P4 content in cows during abortion 
[85]. Low P4 levels have been associated with fetal deaths 
because of their links to inadequate nutrition, which leads 
to a negative energy balance. This interferes with the 
microenvironment in the uterus and results in abortions 
in cows [88]. In addition, stress causes increased P4, which 
stimulates immunosuppressive protein accumulation in 
the uterine lumen, leading to susceptibility to persistent 
bacterial infections [84,90]. Moreover, Sina et al. [64] found 
that P4 concentration was lower in the first and second 
estrous cycles after calving in inflamed cows, which also 
have smaller corpora lutea (CL) compared to healthy cows. 
Therefore, the authors concluded that prolonged days to 
the first service, decreased pregnancy/AI, and increased 
DO usually occur in cows suffering from inflammatory con-
ditions [33,64].

Numerous investigations revealed that excessive OS 
from the placenta and/or maternal tissues was linked to 
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pregnancy problems [91]. Increased ROS and antioxidant 
system depletion lead to the development of an oxidative 
situation [92]. Embryogenesis defects, unexplained RPL, 
and spontaneous abortion are all caused by the develop-
ment of aberrant OS [93,94]. In reaction to OS, pregnancy 
issues like spontaneous abortion and RPL might also 
appear [95].

The hypothalamic-pituitary adrenocortical axis (HPA), 
which regulates hormone production, is stimulated during 
stress reactions [96]. The hypothalamus secretes corti-
cotropin-releasing hormone (CRH). This CRH is trans-
mitted through the hypothalamic-pituitary portal system 
and stimulates the pituitary gland to produce the adre-
nocorticotropic hormone (ACTH). ACTH stimulates the 
production of glucocorticoids by the adrenal gland [97]. 
Glucocorticoids are characterized by their indirect inhib-
itory effect on gonadotropin-releasing hormone (GnRH) 
and luteinizing hormone (LH). These effects are mediated 
by the KNDy cells (Kisspeptin, neurokinin B, and dynor-
phin neurons), which possess glucocorticoid receptors and 

transmit the glucocorticoid signal to the GnRH neurons 
in the hypothalamus [97–99]. This may give an explana-
tion for the causes of the significant increase in the dura-
tion of the first estrus and the increased DO in the group 
of abortive cows in the present study compared to the 
control group (Fig. 2). This point of view is evidenced in 
the present study, in which the serum cortisol concentra-
tions were found to increase in abortive cows compared 
to controls. These findings are supported by Paiano et 
al. [100], who illustrated that several physiological alter-
ations occur in the transition period of dairy cows, such as 
a decrease in body weight and an increase in serum corti-
sol concentrations.

In the current study, a considerable rise in the levels 
of MDA was observed at all-time points in abortive cows 
compared to healthy ones. Moreover, different antioxidant 
components such as SOD, GPX, and TAC exhibited a marked 
reduction in their levels in the abortive group compared 
to control animals. These results are consistent with the 
earlier study, which showed that lactating dairy cows 

Figure 2. The role of stress of abortion in increase the duration to first 
estrus.
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that retained pregnancy had clearly higher levels of GPX, 
SOD, and TAC activity than those that lost their embryos 
between days 16 and 32 [73]. Furthermore, cows that suf-
fered from embryonic loss after timed artificial insemina-
tion (TAI) had higher MDA concentrations compared to 
cows that maintained their pregnancy. Nazari et al. [101] 
stated that cows that lost their pregnancy had lower activ-
ities of the postpartum GPX, SOD, and TAC compared to 
those who maintained pregnancy at days 32 and 60 after 
artificial insemination (AI). Furthermore, normal luteal 
activity, earlier resumption of cyclicity, decreased preg-
nancy loss, and increased conception rate were observed 
to occur in Holstein dairy cows, which exhibited greater 
antioxidant levels in the early postpartum period.

GPX and SOD are the two prominent members of the 
enzymatic antioxidant system responsible for the protec-
tion of the cells against ROS. SOD is one of the primary 
antioxidant enzymes, and it is thought that SOD activity is 
the first line of defense against OS. SOD comes in three dif-
ferent isoforms, including SOD1, SOD2, and SOD3. A study 
conducted by Ghneim et al. [102] found a decrease in SOD1 
and SOD2 activity in women with RPL compared to healthy 
control women. This is almost in agreement with the find-
ings of the current study.

Conclusion

The incidence of pregnancy loss may be the key reproduc-
tive factor influencing how profitable intensive dairy farm-
ing systems are. New insights on cattle abortion require a 
focus on previously understudied fertility after abortion 
in the first trimester of gestation, especially when abor-
tion predisposes to opportunistic bacterial invasion of 
the uterus during the postpartum period, which may be 
attributed to immunosuppression. The investigation of 
hormonal, hematological, and oxidative profiles provides 
a general picture of the body’s conditions after abortion. 
OS and neutropenia are the most important findings in 
this study. OS may occur due to abortion itself or due to 
the invasion of opportunistic bacteria into the uterus after 
abortion, which eventually causes a reduction in fertility. 
Further studies are required to focus on the role of neutro-
penia in the pathogenesis of abortion to illustrate whether 
neutropenia acts as a contributor to the pathogenesis of 
abortion or if it is a later consequence of abortion, after 
other inflammatory changes in the blood. Furthermore, 
researching the mechanism causing this hematological 
shift, as well as any potential genetic susceptibility to this 
disorder, would be intriguing.
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